Verifying genuine multipartite entanglement of the whole from its separable parts

Palacký University Olomouc

Ladislav Mišta

XVI International Conference on Quantum Optics and Quantum Information Minsk, Belarus May 14, 2019

Collaboration

Jan Provazník

Theory:

Olga Leskovjanová

Experiment:

Michal Mičuda

Robert Stárek

Introduction

Inference of a global property of the whole from fragments.

Inference of a global property of a composite quantum system from reduced density matrices (marginals).

- Experiments with composite systems involving many subsystems.
- Separability and security criteria, calculation of some entanglement measures. (Extensibility of ρ_{AB} : $\exists \rho_{ABE}$, $\operatorname{Tr}_E(\rho_{ABE}) = \rho_{AB}$.)

Inference of entanglement from marginals

Pure bipartite state:

Mixed $\rho_A \rightarrow |\psi\rangle_{AB} \neq |\chi\rangle_A |\phi\rangle_B$ (entanglement). Mixed bipartite state:

 ρ_A and ρ_B compatible with $\rho_A \otimes \rho_B$ (inconclusive).

Three systems A, B, C:

Entangled $\rho_{AB} \rightarrow \rho_{ABC}$ entangled across A|BC cut.

Can we infer a property from parts that do not have the property?

`Emergent" entanglement from separable marginals

G. Tóth, Phys. Rev. A **71**, 010301 (2005);
G. Tóth et. al., Phys. Rev. Lett. **99**, 250405 (2007).

Counterexample: $\frac{1}{2}(|00\rangle\langle00| + |11\rangle\langle11|)$ compatible with $\frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$ and $\frac{1}{2}(|000\rangle\langle000| + |111\rangle\langle111|)$.

Genuine multipartite entanglement (GME):

 $\rho \neq p_1 \rho_{A|BC}^{\text{sep}} + p_2 \rho_{B|AC}^{\text{sep}} + p_3 \rho_{C|AB}^{\text{sep}} \quad \text{(biseparable state)},$ $\rho_{X|Y}^{\text{sep}} = \sum_i p_i \rho_X^{(i)} \otimes \rho_Y^{(i)} \quad \text{(separable state)}.$

Can we infer GME from separable marginals? \exists separable $\{\rho_{AB}, \rho_{BC}, \rho_{AC}\}$ compatible only with GME ρ_{ABC} . (L. Chen et al., PRA **90**, 042314 (2014))

Theory

State:

$$\rho = \frac{2}{3} |\xi\rangle \langle \xi| + \frac{1}{3} |\bar{W}\rangle \langle \bar{W}|,$$

$$|\xi\rangle = \frac{1}{3} (e^{i\frac{\pi}{3}} |001\rangle + e^{-i\frac{\pi}{3}} |010\rangle - |100\rangle) + \sqrt{\frac{2}{3}} |111\rangle,$$

$$|\bar{W}\rangle = \frac{1}{\sqrt{3}} (|011\rangle + |101\rangle + |110\rangle).$$

(N. Miklin et al., PRA 93, 020104 (2016))

Separable marginals:

$$\min[\operatorname{eig}(\rho_{jk}^{T_j})] = 0.0037.$$

GME witness:

$$W = W^{\dagger},$$

Tr(ρW) ≥ 0 for all biseparable ρ ,
Tr(ρW) < 0 for some ρ .

SDP: minimize

$$W, P_M, Q_M$$
 Tr(PW)
subject to Tr(W) = 1,
 $W = \sum_{i,j=0}^{3} w_{ij}^{(AB)} \sigma_i^{(A)} \otimes \sigma_j^{(B)} \otimes \mathbb{1}^{(C)}$ + permutations,
and for all bipartitions $M | \overline{M},$
 $W = P_M + Q_M^{T_M}, \quad P_M \ge 0, \quad Q_M \ge 0.$

 ${\rm Tr}(\rho W) \doteq -1.98 \cdot 10^{-2}$

Robustness:

$$p\rho + \tfrac{(1-p)}{8} 1 \!\! 1$$

exhibits the effect for up to 13.7% of white noise.

Logical circuit

Experiment

Results

Genuine ME $\operatorname{Tr}(\rho_{\exp}W) = (-3 \pm 2) \cdot 10^{-3}$

Fidelity $\mathcal{F}(\rho_{\exp}, \rho) \equiv \{ \operatorname{Tr}[(\rho_{\exp}^{1/2} \rho \rho_{\exp}^{1/2})^{1/2}] \}^2 = 0.939 \pm 0.008.$

Conclusion

- Experimental verification of genuine multipartite entanglement of a global state from its separable marginals.
- Is there a Gaussian version of this phenomenon?
- Is there a classical analogy of this phenomenon?