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OUTLINE 

1.! Generalized  information theory (GIT) 

2.! Uncertainty theories 

3.! Uncertainty-based information 

4.! Uncertainty-based information in systems 

5.! Classical possibilistic uncertainty theory 

6.! Classical possibilistic functional U for measuring 
the amount of uncertainty (Hartley measure) 

7.! Uncertainty theory with graded possibilities 

8.! Theory of random sets 

9.! Summary of results and some open problems   
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GENERALIZED INFORMATION THEORY 
(GIT) 

•! GIT is a research program whose objective is to develop 
a formal treatment of the dual concepts of uncertainty 
and information in all their varieties. 

•! GIT was introduced in my paper published in 1991 in  
Fuzzy Sets and Systems, 40(1), pp. 127-142. 

•! In GIT, as in the two classical information theories 
(possibilistic and probabilistic), uncertainty is the 
primary concept and information is defined as the 
capacity to reduce uncertainty. 
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 UNCERTAINTY THEORIES:  
General Scenario  

•! A set of mutually exclusive alternatives is 
considered (predictions, diagnoses, etc.). 

•! Only one of the alternatives is true, but we 
are not certain which one it is. 

•! Uncertainty is expressed differently in each 
theory. 
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CLASSICAL UNCERTAINTY THEORIES 

•! POSSIBILISTIC: Uncertainty results from more possible 
alternatives than one. Information is obtained by any evidence 
that some of the considered alternatives are not possible. 

•! PROBABILISTIC: Uncertainty results from a distribution of 
degrees of evidential claims from a fixed value among all 
considered alternatives. Information is obtained by any 
evidence that makes the distribution more discriminatory. 
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UNCERTAINTY THEORIES:  
Levels of Development  

1.! Uncertainty in theory T is formalized in terms of a 
class of appropriate uncertainty functions u. 

2.! Operating rules (calculus) for manipulating 
functions u in theory T are developed. 

3.! A justifiable functional, U, is found that for each 
particular uncertainty function u in theory T 
measures the amount of uncertainty captured by u. 

4.! Methodological aspects of theory T are developed, 
including the use of functional U as an abstract 
measuring instrument. 
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UNCERTAINTY-BASED INFORMATION 

The amount of information obtained by an action  
is equal to  

the amount of uncertainty reduced by the action.  
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INFORMATION IN SYSTEMS 

•! Every system is constructed within a chosen experimental 
frame for some purpose. 

•! The system is ultimately a formal description of a constraint 
among variables of the experimental frame. 

•! The constraint is utilized in a purposeful way for restricting 
states of some variables on the basis of known states of other 
variables. 

•! Every system can be asked various relevant questions and  
information contained in each answer obtained by the system 
can be measured by reduction of its uncertainty with respect 
to the associated experimental frame. 
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EXPERIMENTAL FRAME  

•! A set of variables chosen on an object of interest 
for some purpose (prediction, retrodiction, etc.). 

•! A set of states that are recognized for each 
chosen variable (numerical or non-numerical). 

 
•! Supporting media within which the variables 

change their states (time, space, population). 
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INFORMATION IN SYSTEMS 

•! The amount of information in a given system with 
respect to a particular question = the amount of 
uncertainty contained in the answer obtained solely 
within the experimental frame (in  face of total 
ignorance) ! the amount of uncertainty contained in 
the answer by using the system. 

 
•! INFORMATION(system, question) = 

UNCERTAINTY(exp. frame, question) ! 
UNCERTAINTY(system,question) 
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VAGUENESS -- FUZZINESS 

A proposition is vague when there are possible states 
of things concerning which it is intrinsically 

uncertain whether, had they been contemplated by the 
speaker, he would have regarded them as excluded or 
allowed by the proposition. By intrinsically uncertain 
we mean not uncertain in consequence of any 
ignorance of the interpreter, but because the speaker!s 
habits were indeterminate. 

                                   Charles S. Peirce 
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NONSPECIFITY 

The formal condition for the presence of 
uncertainty in a person!s thought is the 
presence there of a question to which he 
cannot exclude all except one answer. 

               (George Shackle, 1979, p. 147) 
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POSSIBILISTIC UNCERTAINTY 

When you have eliminated the impossible, 
whatever remains must be the case, 
however improbable it may seem to be. 

                          (Sherlock Holmes) 
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PROBABILISTIC UNCERTAINTY 

Probability is degree of certainty and differs 
from absolute certainty as the part differs 
from the whole. 

                          (Jacques Bernouli) 
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CLASSICAL POSSIBILISTIC 
UNCERTAINTY THEORY 

•! Given a finite set X of considered alternatives, 
uncertainty is expressed by a possibility function 

                                   r: X " {0,1}. 
•! r(x) = 1 means that x is possible and r(x) = 0 means that, 

under given evidence, x is not possible, x"X. 
•! Function r partitions set X into two subsets: X0 and X1.  
•! Information is obtained  by any evidence that reduces the 

subset X1 of possible alternatives. 
•! Possibility set function (nonadditive measure):  

Pos(A) = max
x!A
{r(x)},"A # X
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 AXIOMS OF CLASSICAL POSSIBILITY 
THEORY 

1.! Pos (!) = 0; 

2.! Pos(X) = 1; 

3.! For any A, B # X, Pos(A$B) = max{Pos(A), Pos(B)}. 

     



19 

    For each possibility measure Pos, a dual necessity 
measure, Nec, is defined by the equation 

 

DUALITY BETWEEN POSSIBILITY 
AND NECESSITY MEASURES 

Nec(A) = 1! Pos(A) for all A " X.

     It is necessary that the true element is in A if it is 
     not possible that it is in the complement of A.      
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SOME BASIC PROPERTIES OF POSSIBILITY 
AND NECESSITY MEASURES  

•!  Nec(A) # Pos(A) 

•!  Pos(A$B) # min[Pos(A), Pos(B)] 

•!  Nec(A$B) % max[Nec(A), Nec(B)] 

•!  Pos(A) + Pos(!) % 1 

•!  Nec(A) + Nec(!) # 1 

•!  max[Pos(A), Pos(!)] = 1 

•!  min[Nec(A), Nec(!)] = 0 

•!  Pos(A) < 1 % Nec(A) = 0 

•!  Nec(A) > 0 % Pos(A) = 1 
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FUNCTIONALS U FOR MEASURING 
UNCERTAINTY: Key Requirements 

1.!Subadditivity 

2.!Additivity 

3.!Range 

4.!Continuity 

5.!Normalization 

6.!Expansibility 

7.!Consistency 

8.!Monotonicity 

9.!Coordinate 
Invariance 
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UNIQUENESS OF FUNCTIONAL U 

•! For any given uncertainty theory T, functional U is required to be 
unique under all the requirements formulated in the calculus of 
theory T. 

•! The normalization requirement may be formulated in different 
ways in each theory T. Each possible formulation defines a 
particular measurement unit of uncertainty when uncertainty is 
measured by functional U in theory T.  

•! U is an abstract measuring instrument: function u in theory T is an 
input, a real number measuring the amount of uncertainty captured 
by u is the corresponding output. 
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RÉNYI!S AXIOMS FOR MEASURE 
OF POSSIBILISTIC UNCERTAINTY U 

U: |X1| " [0, &) 
 

Axiom 1. U(n'm) = U(n) + U(m) [additivity]. 

 

   Axiom 2. U(n) # U(n+1) [monotonicity]. 

 

   Axiom 3. U(2) = 1[normalization]. 
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UNIQUENESS OF POSSIBILISTIC 

MEASURE OF UNCERTAINTY U 

 

Theorem (Rényi 1970). U(X1) = log2 |X1| is the  
only functional that satisfies Axioms 1-3. 

Proof:                            Part 1 

1.! For any integer n % 2 and any natural number i, define 
a   natural number q(i) such that 2q(i) # ni  < 2q(i)+1. 

2.! Rewrite as: q(i)log22 # i log2n < [q(i)+1]log22. 

3.! Rewrite again as: q(i)/i " log2n <(q(i)+1)/i. 

4.! Hence,  limi#&(q(i)/i) = log2n. 
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Part 2 

1.! By monotonicity, U(2q(i)) # U(ni) # U(2q(i)+1). 

2.! By additivity, U(ak) = U(ak-1)+U(a) =  U(ak-2)+U(a)+U(a) =  
U(ak-3)+U(a)+U(a)+U(a) = … =  kU(a). 

3.! Hence, q(i)U(2) # iU(n) # (q(i) + 1)U(2). 

4.! By normalization, q(i)  # iU(n) # q(i) + 1. 

5.! Rewrite as,  q(i)/i " U(n) "(q(i)+1)/i. 

6.! Hence, limi#&(q(i)/i) = U(n). 

7.! From Part 1 of the proof: limi#&(q(i)/i) = log2n. 

8.! Hence, U(n) = log2n.  

9.! Than, if n = |X1|, U(|X1|) = log2|X1|. 
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Hartley functional for measuring classical 
possibilistic uncertainty, which is usually 
referred to as nonspecificity, and the 
associated uncertainty-based information: 

H (A) = log2 A

I
H
A( ) = log2 X ! log2 A
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JOINT AND MARGINAL HARTLEY 
MEASURES  ON X'Y 

•! Joint Hartley measure: H(X,Y) = log2|R|, 
where R is a relation on X'Y (i.e. R # X'Y). 

 

•! Marginal Hartley measures: H(X) = log2|RX| 
and H(Y) = log2|RY|, where 

    RX  = {x"X: (x,y)"R for some y"Y}, 

    RY  = {y"X: (x,y)"R for some x"X}. 
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CONDITIONAL HARTLEY 
MEASURE ON X$Y 

•! H(X | y) = log2|Xy|, where 

    Xy = {x"X: (x, y)"R for a particular y"Y, 
and (y"Y |Xy| = R. 

•! H(X |Y) = log2|R|/|RY| = log2|R| ! log2|RY| = 
H(X,Y) ! H(Y). 

•! Observe that |R|/|RY| is the average, for all 
y"Y, of numbers of possible alternatives in X 
when individual alternatives in Y are chosen. 

•! Similarly,  H(Y |X) = H(X,Y) ! H(X). 
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Basic Equations and Inequalities of 
Uncertainty Measures U on X $ Y 

•! U(X |Y) = U(X 'Y) ! U(Y) 

•! U(Y |X) = U(X 'Y) ! U(X) 

•! TU(X,Y) = U(X) + U(Y) ! U(X 'Y)  

•! U(X 'Y) # U(X) + U(Y)  

•! U(X |Y) # U(X)  and  U(Y |X) # U(Y)  

•! These equations and inequalities are valid in 
all theories of uncertainty. 
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HARTLEY-LIKE MEASURE IN  
n-DIMENSIONAL EUCLIDEAN SPACE 

•! A is a convex subset of Rn. 

•! µ denotes  the Lebesgue measure. 

•! T denotes the set of all isometric transformations from 
one orhogonal coordinate system to another. 

•!      denotes the i-th projection of A within the 
coordinate system t. 

HL A( ) = min
t!T
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THEORY OF GRADED POSSIBILITIES 

•! Classical possibility function r: X "{0,1} is in this 
theory generalized to r: X "[0,1]. 

•! r(x) is interpreted as the degree to which x is possible. 

•! Possibility measure, Pos, is defined by the same 
axioms as in classical possibility theory. 

•! A dual necessity measure, Nec, is again defined by 

Nec(A) = 1 ! Pos(!), &A#X.   
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JOINT AND MARGINAL GRADED 
POSSIBILITIES ON X'Y 

    Given a joint possibility function on  r: X'Y " [0,1], 
the associated marginal functions are defined by: 

   
r
X
(x) = max

y!Y
{r{x, y},"x !X,

r
Y
(y) = max

x!X
{r(x, y},"y !Y .
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POSSIBILISTIC INDEPENDENCE ON 
X'Y 

•! In general, r(x,y) # min{rX(x),rY(y)} for all 
(x,y)"X'Y. 

•! Possiblistic independence is obtained when 
r(x,y) = min{rX(x),rY(y)}.  
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CONDITIONAL GRADED POSSIBILITIES 
ON X'Y 

    In general, the joint possibility function can be 
expressed via either of the following equations: 

  

r(x, y) = min r
Y
(y),r

X Y
(x y{ },

r(x, y) = min r
X
(x),r

Y X
(y x){ }.
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CONDITIONAL GRADED POSSIBILITIES 
ON  X'Y -- 2 

By solving the equations for rX|Y and rY|X, we obtain: 

 

r
X Y

(x y) =
[r(x, y),1]  when r

Y
(y) = r(x, y)

r(x, y)        when r
Y

(y) > r(x, y)

!
"
#

r
Y X

(y x) =
[r(x, y),1]   when r

X
(x) = r(x, y)

r(x, y)         when r
X
(x) > r(x, y)

!
"
#
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ORDERING OF POSSIBILITY DEGREES 

•! Let X = {x1, x2, …, xn} and let r(xi) % r(xi+1) for 
all i = 1, 2, …, n!1. 

•! Let ri = r(xi) and let the n-tuple r = (r1,r2, …,rn), 
where r1 = 1, be called a possibility profile. 

•! Standard partial ordering of possibility profiles 
on X forms a lattice whose maximum and 
minimum elements are, respectively, (1,1, …, 1) 
and (1,0,0, …, 0). 

•! For any two possibility profiles jr and kr such 
that jr # kr,  jr contains more information. 
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NECESSITY MEASURE 

•! Let Ai = {x1, x2, …, xi} for all i = 1, 2, …, n. 

 

•! Sets Ai are the only subsets of X for which the 
necessity measure, Nec, is not zero. 

 

•! Assuming that rn+1 = 0 by convention,we have 

Nec(Ai) = 1 ! ri+1. 
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MÖBIUS TRANSFORM 

 

 

 

m(A) = (!1)
A!B

B:B"A

# Nec(B)

Nec(A) = m(B)
B:B!A

"
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MÖBIUS REPRESENTATIONS 

      Möbius representations are set functions, m, that 
satisfy the following two requirements: 

 

M(!) = 0; and  

 

m(A) = 1
A!X

" .



40 

MÖBIUS REPRESENTATION IN 
POSSIBILITY THEORY 

•! Applying the Möbius transformation to a necessity 
measure, we obtain m(A) = ri ! ri+1 when A = Ai 
and m(A) = 0 for all other subsets of X. 

•! Let mi = m(Ai). Then, mi = ri ! ri+1 (rn+1= 0). 

•! For each possibility profile r, there exists a unique 
Möbius n-tuple m = (m1, m2, …, mn) such that  

 
m

i
= 1.

i=1

n

!
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POSSIBILITY PROFILES VERSUS THE 
ASSOCIATED MÖBIUS TUPLES 

•! Information ordering of Möbius n-tuples may be 
induced from the natural information ordering of 
possibility profiles via the isomorphic relation 
between the two representations. 

•! r = (1, 1, …, 1) corresponds to m = (0, 0, …,0, 1). 

•! r = (1, 0, …, 0) corresponds to m = (1, 0, …, 0). 



42 



43 

GENERALIZED HARTLEY MEASURE OF 
NONSPECIFICITY IN THE THEORY OF 

GRADED POSSIBILITIES 

•! Introduced in (Higashi and Klir, 1983): 

 

•! Uniqueness of GH proved in (Klir and Mariano, 
1987). 

GH (r) = m
i
log2 Ai

i=1

n

! = m
i

i=1

n

! log2 i.
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 THEORY OF FINITE RANDOM SETS 

•! Given a finite universe X, a finite random set is a 
nonempty family F of subsets of X and a function m on 
F. 

•! For all A"F, m(A)"[0,1], m(!)=0, and (A"Fm(A)= 1. 

•! Sets in F can be viewed as sets of possible alternatives 
associated with values of function m. 

•! Function m can be viewed as a probability distribution 
function on sets in F.  
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RANDOM-SET THEORY AND EVIDENCE 
THEORY ON FINITE SETS 

•! Function m is a special Möbius representation (since 
m(A)"[0,1] for all A"F). 

•! The inverse Möbius transform results in a totally 
monotone measure Bel (belief measures) of evidence 
theory: 

•! A dual measure is a plausibility measure, Pl, defined 
in the usual way: Pl(A) = 1 ! Bel(!). 

Bel(A) = m(A).
B:B!A

"
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HARTLEY MEASURE OF NONSPECIFICITY 
IN THE THEORY OF RANDOM SETS 

•! The theory of random sets is closely connected with 
the Dempster-Shafer theory of evidence. Both are 
based on totally monotone measures, for which the 
Möbius representation is always positive. 

•! The generalized Hartley measure has the form: 

 
GH (m) = m(A)log2

A!X

" A .
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MEASURES OF NONSPECIFICITY ON 
FINITE SETS: A Historical Overview 

•! In classical possibility theory: 

H(A) = log2|A|. 

•! In the theory of graded possibilities: 

•! In the theory of random sets (or evidence theory): 

 

 

GH (r) = m
i

i=1

n

! log2 Ai = m
i

i=1

n

! log2 i.

GH (m) = m(A)log2
A!F

" A.
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HARTLEY-LIKE MEASURE IN THE 
THEORY OF GRADED POSSIBILITIES 

•! When A is a classical set on Rn (n%1), then 

•! When A is a standard fuzzy set on Rn, then 
 

HL A( ) = min
t!T

c log2 1+ µ A
i
t
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SOME INTERPRETATIONS OF GRADED 
POSSIBILITIES 

•! Fuzzy-set interpretation: 

•! Similarity interpretation: r(x) is the degree of 
similarity between x and an ideal prototype xi. 

•! Comparative interpretation: r(x) is, for example, 
the degree of ease to achieve x.  

•! Frequency interpretation: Given a nested family 
{Ai: i = 1,2, …, n} of subsets of X, mi = ri ! ri+1 is 
defined as the number of observations in Ai and 

 

 

r
F
(x) = F(x) +1!max

x"X

F(x),#x "X.

r
i
= m

k
.

k= i

n

!
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CONCLUSIONS AND OPEN QUESTIONS 

•! Theory of possibilities, both classical and graded, is 
now well developed at all levels. 

•! Algorithmic research is needed for computing the 
Hartley-like measure. 

•! The important class of decomposable measure has 
not been investigated from the standpoint of GIT as 
yet. 

•! Research regarding the construction of possibility 
profiles is still needed for some interpretations. 


