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Basic concepts of imprecise probabillities

 Classical probabillity theory works with single
probability measures.

» The theory of imprecise probabilities works with
sets of probability measures.

In this lecture we consider probability measures
defined on the powerset of a finite set
X =A{x1,....,x,}.

M, (X) is the set of all probability measures df.
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Credal sets

In this lecture a credal set is understood as a closed
convex set of probability measures with a finite
number of extreme points. P is a credal set and

P. e M, (X), k=1,...,m, are its extreme points
then

P = {ZCLZPZMZ P> O, Zai — 1}
k=1 k=1
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Let X = {x1,x9, 3}, then any credal set is convex
subset of triangle consisting of poinis, p», p3):
pi = 0,p1+p2+p3=1

B,P, P, P, are extreme points.
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Monotone measures

Let X be a finite set. A set function : 2* — [0, 1] is
called a monotone measure |if

1. u(0) =0, u(X) = 1 (norming);
2. A C Bimpliesu(A) < p(B) (monotonicity).

Notation:

o M,..,n(X) is the set of all monotone measures on
2X.

° 1 < o for p, po € Mipon(X) i p1(A) < pa(A)
forall A € 24.

—n. 5/83




Lower probabilities

A monotone measure is called a lower probability If
there is aP € M, such thajy < P.

Any lower probabillity.. defines a credal set

P(p) = {P € My (X)|P = pj.
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Let ;. be a lower probability o2+, where
X ={x1, 29,23}, then extreme points @& () can be
found by solving the following inequalities:

p1 = W ({xl}) ;
p2 = U ({552}) ;
p3 = p(123})
p1 +p2 = p ({21, 22}),
p1+ps = ({21, 23}) .
P2+ p3 = i ({z2, 13}),
p1+p2+p3 =1

Clearly lower probabilities are less general than credal
sets.
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Upper probabilities

A monotone measure is called an upper probability
If there Is aP € M, such thafu > P.

Any upper probability generate a credal set
{P € My, (X)|P < p}.

It Is possible to consider only lower probabillities. Let
1 be an upper probability. Introduce into

consideration a measuré(A) = 1 — u(A°). The

measure. is called dual ofx. Clearly . and
generate the same credal set
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Coherent lower probabillities

A lower probability. 1s called a coherent lower
probability if for any A € 2 there is aP € M, such
thaty < Pandu(A) = P(A).

Any coherent lower probability can be generated as
follows: If P Is a credal set then

_ X
u(A) = win P(A), A € 2%,

IS a coherent lower probability.
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Coherent upper probabillities

An upper probability. Is called a coherent upper
probability if for any A € 2 there is aP € M, such
thaty > P andu(A) = P(A).

Any coherent upper probability can be generated as
follows: If P Is a credal set then

_ X
u(A) = ax P(A), A € 2%,

IS a coherent upper probabillity.
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2-monotone measures

A monotone measure Is called 2-monotone If the
following inequality holds:

u(A) + p(B) < p(AN B) + p(AU B).
for the dual measure the following inequality holds:
p'(A) + p(B) = p'(AN B) + u'(AU B).

This measure Is called 2-alternative. It is known that
any 2-monotone measure Is a coherent lower
probabllity, and any 2-alternative measure Is a
coherent upper probabillity.
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Belief and plausibility measures

Belief and plausibility measures are defined by means
of a basic probability assignment. A basic probability

assignmentn is a non-negative set function arn
such that

1. m(0) = 0;
2. > m(A) =1 (norming).
Ae2X
Then
Bel(A) = > m(B)andPIl(B)= )_  m(A).
BCA BNA(

The setA is called focal for somen if m(A) > 0.
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Some times, it Is useful to represent belief functions
using{0, 1}-valued measures:

1, BCA,
0, otherw:ise.

By (A) = {

Then
Bel(A) = Y2 m(B)is)(A).

Be2X

The sense o g Is the following. It describes

situation when we know that the random variable
definitely takes values from the sBt but we don’t
know any additional information.

Clearly, Pl = Bel.
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Possibility and necessity measures

A possibility measurd’os Is such thatPos € Mo,
Pos(AU B) = max{Pos(A), Pos(B)} A, B € 2%,

A necessity measur®ec Is such thatVec € M,
Nec(AN B) = min{Nec(A), Nec(B)} A, B € 2%,

The dual of a necessity measure is a possibility
measure. Any necessity measure is a belief measure.
A belief measure Is a necessity measure if focal
elements form a chain.
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M oObius transform

The set of all set functions dit* is a linear space and
the system of set functions) p) } ,_, is the basis of
It. We can find the representation

pw= >, m(B)np
Be2Xx

of anyp : 2% — R using the M6bius transform:

m(B) = ¥ (~1)"u(4)
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Projections of measures

Letu € M,,0n(X) andp : X — Y, thenu? is a
monotone measure ai defined by

1P (B) = p({x € X|o(x) € B), whereB € 2*.

Let u € M,,,n(X x Y) then marginal measures;
andyy are defined by

1. ux(A) = pu(A xY) for A € 2%;
2. uy(A) = (X x A)for A € 2%,
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Projections of credal sets

The same operations are analogously defined for
credal sets:

LetP € Cr(X) andyp : X — Y then
PY ={P¥|P € P}.

LetP € Cr(X x Y) then marginal credal sei3y
andPy are defined by

Py = {PX|P = P} andPy = {Py|P = P}
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Shannon entropy

Let P be a probability measure @t then the
Shannon entropy is defined by

S(P) = —¢ Y P({z;})In P({z;}), wherec > 0.

r; €EX

If Information 1s measured In bits, and the information
of one bit Is equal to 1 then

S(P) == 2. P(lzi;)lgy P({zi}).

r;€X

The Shannon entropy measures conflict in the
Information.
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Hartley measure

Let us assume that we have the information that the
random variable takes definitely a value from an
non-empty sed C X , The uncertainty of this
Information is measured by a Hartley measure:

H(A) = cln |A|.

If Information 1s measured In bits, and the information
of one bit Is equal to 1 then

H(A) = 1gy |A].

The Hartley measure reflects the non-specificity in the
Information.




Types of uncertainty in the theory of imprecise
probabilities

Conflict. It refers to probability measures.

Non-specificity.lt refers to the choice of a probability
measure from the possible alternatives.

Types of uncertainty measures:

« Uy Is a measure of non-specificity;
* Uqs IS a measure of conflict;
« Ur Is a measure of total uncertainty.
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Requirements for choosing uncertainty measures
suggested by George J. Klir

Subaddivity:The amount of uncertainty in a joint
representation of evidence (defined on Cartesian
product) cannot be greater then the sum of amounts o
uncertainty in the associated marginal representations

of

evidence.

Additivity: The amount of uncertainty in a joint
representation of evidence is equal to the sum of the
amounts of uncertainty in the associated marginal

re
re
ru

oresentations of evidence if and only if the marginal
presentations are non-interactive according to the

es of uncertainty calculus involved.
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Monotonicity: When evidence can be ordered in the
uncertainty theory employed (as in possibility theory),
the relevant uncertainty measure must preserve this
ordering.

Continuity: Any measure of uncertainty must be
continuous functional.

Expansibility: Expanding the universal set by
alternatives that are not supported by evidence must
not affect the amount of uncertainty.

Symmetry:The amount of uncertainty does not
change when elements of the universal set are
rearranged.
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Range:The range of uncertainty {8, M|, where0

must be assigned to the unigue uncertainty function
that describe full certainty antf/ depends on the size
of the universal set involved and on the chosen unit of
measurement (normalization).

Branching/Consistency/Vhen uncertainty can be
computed in multiple ways, all acceptable within
within the calculus of the uncertainty theory involved,
the results must be the same (consistent).

Normalization:A measurement unite defined by
specifying what the amount should be for a particular
(and usually very simple) uncertainty function.
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Axioms for choosing an uncertanty measure on
M
pr

Subaddivity:Let P € M,.(X x Y), then
Ur(Px) + Up(Py) = Up(P).

Additivity: Let P € M, (X xY)andP = Px x Py,
thenUT(PX) i UT(Py) — UT(P)

Continuity: Uy Is a continuous functional.

Expansibility:Let P € M, (X) and letp : X — Y
be a injection such thaX’ C Y andy(x) = « for all
r e X. ThenUT(PSO) — UT(P)
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Symmetry:Let P € M,.(X) and lety : X — X be a
bijection, thenUy(P¥) = Up(P).

Range:Ur : M, — |0,400) andUr(P) = 0iff Pis
a Dirac measure, I.e. thereas= X such that

P({z}) = 1.

Normalization:Let X = {z,z2} andP € M, (X) is
such thatP({z,}) = P({z2}) = 0.5. Then
Ur(P) = 1.
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Remarks

1. It Is well known that the above requirements lead to
the Shannon entropy functional:

S(P)=— >, P{zi})lgs P({xi})-

r;€EX

2. The additivity axiom has the following
Interpretation through random variables: if random
variablest y &y are independent, then

Ur (&x,&y) = Ur (Ex) + Ur (&y).
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3. The additivity property of Shannon entropy can be
understood also as

S(€x,8y) = S(€x|§y) + S(&y),

and the last expression can be taken as an additivity
axiom.

4. The additivity axiom for general theories of
Imprecise probabilities must be based on more genera
Independence principles than in the classical
probabllity theory.
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5. Itis hard to understand what continuity means for
functionals on credal sets.

6. Some times monotonicity requirement can be
formulated as: Additional information reduces
uncertainty.

/. Itis possible to introduce one axiom that includes
symmetry and expansibility axioms:

Let P € M, (X) and letp : X — Y be a injection.
ThenUT(PSO) — UT(P)
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Independent principles in the theory of imprecise
probabilities

Notation:

X Is a finite non-empty set;

Here we consider all possible sets of probability
measures o~ .

The set of all possible such objects is denoted by
Spr(X).
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General definition

LetP € S5, (X x Y), whereX andY are finite
nonempty sets. Assume thRtis the joint description
of two random variableg,y and&y, with values inX
andY’, respectively. We say that is irrelevantto ¢ x
If knowing an exact discription ofy has no influence
on the description of x. They arandependenif £x

IS Irrelevant tosy andéy Is irrelevant to€ .

Question:How this general definition can be viewed
through concieved types of uncertainty: conflict and
nonspecificity?
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Independence In probability theory

Let P € M, (X x Y) be the joint description of x
and&y, and letPx and P be marginal probability
measures.

Assumety takes the valug € Y. Then the
information about x is described by?, ¢ M,,.(X),

defined by

whereA € 2% andP(X x {y}) # 0.
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&y Isirrelevantto & x Iff
B, = Px foranyy € Y with P ({y}) # 0.

Random variablesy and¢y areindependent
If £x IS irrelevant tay, and¢&y Is irrelevant tof x .

It Is well known that in probability theory irrelevance
Implies independence, arftl= Py x Py.
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Two types of conditioning

1. Let we know the exact descriptidy € Py, of the
random variabley . Then

Pip, ={n € Pluy = Pv}
IS the conditioning giverPy .

2. Let we know both the probability distribution and
the true value) € Y of & In the experiment. Then for

anyy € Y with Py ({y}) > 0

P|PY>?J — {M\ym = P\Py}
IS the conditioning givery andy € Y.
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Precise general definition
We say thaty Is fully irrelevant(or irrelevant) ta¢ x
Iff

P’PY y (P’PY) = Px
forany Py € Py and anyy € Y with Py ({y}) > 0

£x and&y are calledully independentor
iIndependent)if the full irrelevance is fulfilled in both
directions.
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Independence related to nonspecificity (marginal
Independence)

&y Is marginally irrelevanto & If
(P, ), = Px forany Py € Py.

£x and&y are callednarginally independent the
marginal irrelevance is fulfilled in both directions.
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Independence related to conflict (epistemical
Independence)

LetP,y — U P|PY7y.
Py Py |Py({y})>0

Thené&y Is epistemically irrelevanto £ x If

P, = Px foranyy € Y such that?|, # 0.

¢ x and&y are calledepistemically independeritthe
epistemical irrelevance is fulfilled in both directions.
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DCINIES

Let random variable§y and&y be described by a set
PecS, (XxY) Then

a) they are independent if
P = {PX X Py’PX - PX,PY - Py},

b) &y Is Irrelevant tof x If
P = {P - MpT(X X Y) ’PX cPx, Py e Py}

andPx = P (7)) for some nonempty se® C X.

—n. 37/83




Main result

Theorem Let random variablegx and&y be jointly
described by a credal s&t € S, (X x Y). Thenty
IS fully Irrelevant to¢ x iff &y Is marginally and
epistemically irrelevant tg .

It Is possible to show by an example that there are
cases when marginal and epistemical irrelevance doe
not imply full irrelevance in general.

—n. 38/83




Products

The inverse problem: How to define the joint
description of independent sources of information
using marginals?

The solution Is based on the maximum uncertainty
principle and on the following. If random variableg
and¢&y are independent and described by $2tsand
Py . Then among their possible joint descriptions
there Is a largest set defined by

Poox = {P €M, (X xY)
Ve € X - P, Py € Py
VyeY:P, PxyePxl.

This set is called the product &y andPy and
denoted byP x x Py.
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Other products

The marginal independence implies the following
product.

PX X N PY —
{Pe M, (XxY)|Py e Px, Py € Py}.

Under the assumption thé&t is irrelevant tax, we
get the following largest set:

PX X[Py:
{PE Mpr(X X Y)’Py c Py, VyeY: P’y,PX EPx}.
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Properties

If Px andPy are credal sets, then the epistemic
Independence implies the introduced product
PX X PY :

It Is possible to show that if IP x andPy are credal

sets are credal sets, thPrr x Py, Py X Py,
Py x; Py are also credal sets, I.e. the introduced
operations can be performed within credal sets.
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Strong independence

LetPx € Cr (X) andPy € Cr (Y). Then a credal
setinCr (X x Y), being a convex closure of the set
{Px x Py|Px € Px, Py € Py} describestrong
Independencef credal set® y andP,. We denote
this product byP x x5 Py.

The strong independence give us the smallest set of
probability measures, for which independence is
fulfilled. This implies from the next proposition.
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Proposition. Let iIndependent random variablég
and¢&y be described by a credal sBte Cr(X x Y).
Then

(1) & IS Irrelevant to€ x iff
Py xs Py CP C Px X1 Py;

() £x andé&y are independent iff
PX XSPnggPXXPy.
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M Obius product

Let ux € Mbel(X)1 Uy € Mbel(Y) and letmx, my be
their basic probability assingments.

Then the MObius product ofxy anduy Is a belief
measure: € M (X x Y') with a basic probability
assingment

m(A x B) = mx(A)my(B) (m is equal ta) on other
subsets ofX x Y).

The Mobius product of: x andy Is denoted by
U= HUx XM Hy.
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The probabillistic interpretation of M 0bius product

Let u € M, (X) and letm be its basic probability
assingment. Then can be concieved as a description

of random valu& with values in2* such that
Pr(é = A) =m(A).

Thenu(A) = Pr (€ C A).

Let ¢ be a random value with values ¥t ¥ and¢y,
&y be its projections otX” andY’, respectively. Then

Pr(&x = A) = Priprx¢ = A},
Pr(&y = B) = Pr{pry& = B}.
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¢ x andé&y are independent according to the usual
definition if for any A € 2* andB € 2¥

Pr(éx = A)Pr(&y = B) = Pr{prx& = A, pryé = B} .

If £x and&y are independent, in addition, by known
marginalsuy € M (X) anduy € My, (Y') their
joint descriptionu € M, (X x Y') according to the
maximum uncertainty principle can be defined as

p=pux Xnp Hy .
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Paper: A.G. Bronevich, G.J. Klir Axioms for
Uncertainty Measures on Belief Functions and
Credal Sets

Objectives for investigatiomtroducing axioms for a
total uncertainty measure and its disaggregation on
belief functions and credal sets under the principle of
uncertainty invariance.
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Previous works

1. It was established that if we consider coherent
lower probabilities, there are two types of uncertainty
"conflict" and "nonspecificity”. One can find other
terms in the literature, for example, "conflict" =
Srandomnesss, "nonspecificity" = "Imprecision". 2.

There Is an opinion that measures of uncertainty
Interact in additive manner, I.e. there Is a measure of
total uncertainty/ that accumulates additively two
types of uncertainty by

Ur = Uy + Ug,
whereU)y IS a measure of non-specificity abg: Is a
measure of conflict.
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3. LetU be an uncertainty measure. What kinds of
properties it should possess? There Is an opinion that
these properties should generalize properties of the

Shannon entro

Let us remind t

oy and the Hartley measure.

nat th&hannon entropy Is the

functional defined on the set of probablility measures

by

S(P) = —c ), P(w})In P({w}),

wel)

whereP € M,, andc > 0 Is chosen by using the
normalization (boundary) condition.
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TheHartley measuré{ is used when we have the
only information about random variabfethat it takes
value in a setd. This information can be described by

a {0, 1}-valued necessity measuyg, and by
definition

H (1)) = cIn (JA]),

wherec > 0 Is chosen by using the normalization
condition.
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These measures have the following properties:

P1.Symmetry:S (P¥) = S(P),

H (an>) = H (n.4)) for any bijectiony : ; — Q.

P2.Label Independencys (P¥) = S(P),

H (an>) = H (77<A>) for any bijection(; — €.

P3. Expansibility: S (P¥) = S(P),
H (an>) = H (n.a) for any injectiony : ; — Qs

such that?; C €, andp(w) = w for eachw € (0.
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H (niaxp)) = H () + H (ns)) -

P5.Subadditivity:Let 2 = X x Y, P € M,,(€2) and
C CQ. ThenS (P) < S(Px)+ S (FPy),

H (micy) < H (Mpryey) + H (Mipry ) -

Let us notice that P2 => P1 and P1, P2 and P3 can be
equivalently changed to

P1-P3.5 (P?) = S(P), H (nf,)) = H (na) for
any injectiony : 0; — €.
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If we go to more general theories of Imprecise
probabilities, then there are questions: How to
generalize these properties? What new properties can
be considered as necessary ones?

Because of many approaches to independence In the
theory of imprecise probabilities, it is not clear how
define additivity properties of uncertainty measures.
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Harmanec’s axioms for a total uncertainty
measure onMy,;

RO. Functionality. A measure of total uncertainty is a
functionalUyr : My, — [0, +00).

R1. Label Independenciset X, Y be finite
nonempty sets and : X — Y be a bijection. Then

Ur (1) = Ur (p) for any u € My (X).
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R2. Continuity.Let u € My, (X ), m be the MoObius
transform ofu. Then the function

f(x) = Ur (u — anay + xnp) ), which is defined for
arbitrary nonempty setd, B € 2* and any

r € [—m(B),m(A)], is continuous on

—m(B), m(A)].

R3. Expansibility.Let X andY be finite nonempty
sets, X C Y, andy : X — Y be an injection, defined

by p(z) = x forall z € X. ThenUr (u¥) = Ur ()
foranyu € My (X).

R4. SubadditivitylLet u € My (X x Y), then
Ur (px) + Ur (py) 2 Ur (p).
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R5. Additivity. Let ux € My (X), py € My (Y),
and letu € M, (X x Y') be the MoObius product of

px anduy. ThenUr (ux) + Ur (py) = Ur (1),

R6. Monotone Dispensability.et i € M, (X) and
m be the Mo6bius transform of. If v € M,;(X) can

be represented as= >  m(A)ua, Where
Ae2X\()

pa € My (X) andpg < gy forall A € 24\0), then
Ur(p) < Ur(v).
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R7. Probabilistic Normalizatiorf X = {x, x5},
P e M, (X),andP ({z1}) = P ({z2}) = 0.5. Then
Ur(P) = 1.

R8. Nonspecificity Normalizatiordf X = {xq, x5},
thenUr (77<X>) = 1.
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Questions:

1. How to generalize continuity axiom R3 for credal
sets?

2. How to generalize additivity axiom R6 for credal
sets?

3. Why axiom R7 is presented in this form? May be it
IS better to use

R10. Strong Monotone Dispensabilityet
w,v € My (X)andy > v. ThenUp(n) < Ur(v)
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4. Why 1t Is required (see axioms R8 and R9) that
Ur (nixy) = Ur(P) for X = {x1, 2} and for the
orobability measuré’ defined in R8?

R1-R5 can be easily reformulated for credal sets.
D. Harmanec has proved that the upper entropy:
S*() = sup{S(P)|P € P(p)}

satisfies axioms R1-R9 and this is the smallest one
among functionals obeying axioms R1-R9.
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Possible disaggregations 6f
1.Upr=5"Uy=GH,Us=5"—GH,

whereG H Is the generalized Hartley measure.

If =5 m(A)nu, then
GH(p)=c > m(A)In|A|.
Ac2X\()

2.Up=5"Uny=5"—5,,Ucs =5,
wheresS, Is the minimal entropy defined by

S.(u) = inf {S(P)|P € P(u)}.
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Properties of uncertainty measures

S* GH S*—GH S5*—-5, S,

subadditivity + + - - -

additivity w.r.t.
MoObius product +  + + - -

addivity w.r.t.
strong
Independence + @ - - + +
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Questions:

1. Is the property of subadditivity essential for
measures of nonspecificity and measures of conflict?

2. How the generalized Hartley measure can be
generalized for credal sets?

3. Does a justifiable subadditive measure of conflict
exist or does not?

4. What additivity properties are essential for total
uncertainty measures, measures of nonspecificity and
measures of conflict?

5. Is a total uncertainty measure unigue or Is not?
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To answer these guestions, It IS necessary

1. To introduce a system of axioms for uncertainty
measures, which can be equivalently formulated for
belief functions and credal sets.

2. To look critically at independence principles in the
theory of imprecise probabilities through the problem
of defining uncertainty measures with properties,
which are similar to ones of the Shannon entropy.
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Axioms for a total uncertainty measure and Its
disaggregation on belief functions

Ur I1s a measure of total uncertainty;
Uy 1S a measure of nonspecificity;
Uc 1S a measure of conflict.

Axiom 1. Let u € My, (X). ThenUy () = 0 if

JIAS Mpr(X) andUg(/L) =01If u = M(B) B e 2X\@.

Axiom 2. Let p : X — Y be an injection, I.e.
p (z1) # ¢ (x2) if 21 # x2. ThenUr (u?) = Ur (p)

Uy (1?) = Un (p), Uc (u?) = Uc (p) for any
[ Mbel(X)-

—n. 64/83




Partial cases of Axiom 2:
Symmetry Axiom ifY = X andy Is a bijection;
Label Independency Axiom ip is a bijection;

Expansibility Axiom if X C Y Is an injection such
thatyp(x) = x forall z € X.

Axiom 3. Letpu € My (X), Y C X,andp: X —» Y
with o(z) € ¢! (p(z)) for anyz € X. Then
Ur (1) 2 Ur (#7).

Axiom 4. If 1, Ho € Mbel(X) and,u1 < U9, then
Un(p) 2 Un(p2) @andUr(p) = Ur(ps)
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Axiom 5. Let u = ux X py, Where,uX ~ Mbel(X),
py € My (Y'), andux = 4 for someA C X. Then

Ur (1) = Ur (ux) + Ur (uy).

Axiom 6. Let u € My (X x Y) anduy € M, (V).
Then

Ur(p) = Z wy ({y}) Ur () + Ur (py) |

yeY

_ (A x{yy) X
wherep, (A) = o (o)) , A e 22,
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Axiom 6 Is the generalization of the property of

Shannon entropys (&,7) = S(&|n) + S(n), where
andn are random variables with values sandY’ .

Axiom 7. Let u € My (X x Y). Then

Ur (1) < Ur (px) + Ur (py) (the subadditivity
axiom).

Axiom 8. Ug () + Un () = Urp(p) forany pu € My
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Corollaries from axioms

Corollary 1.Let uq, pto € Mpe(X),
nw=ap + (1 —a)us fora € |0,1].
Then
aUr (p) + (1 — a)Ur (p2) < Ur (p).
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Corollary 2.Let = >, axpr, Where

L € Mpe (Xk), ap, > 0, k=1,... m, 27]?:1 ar. = 1,
and X, k=1, ..., m, be pairwise disjoint finite
nonempty sets, i..X;},_, is a partition of

X = UZL:1 Xp. Then

Uy (1) = i axUr (i) + U (1),

wherep : X — { Xy, ..., X, } is such thatp(x) = X
If x € X,.
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Corollary 3.Let P € M,.(X). ThenUp(P) = S(P),
whereS' Is the Shannon entropy.

Corollary 4.Let . € My (€2) and pp = 14,

A€ 2\0. ThenUr (1) = H (p), whereH is the
Hartley measure.

Corollary 5.Letu = > " | apu, Where

i € Mbel(X)1 ap, =0, k=1,... m, 227;1 ar. = 1,
and letP € M,, ({1,...,m}) be such that
P({k})=ag, k=1,...,m. Then

m

> arUr () + Ur(P) = Ur () .
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P1.The maximal entropy™* satisfies all the axioms
for a total uncertainty measure a,;.

P2.Possible disaggregations 8f on M,,;:

Ur=5"Us=25,,Ux=5" -5, wheresS, Is the
minimal entropy;

Ur=5""Uy=GH, Uc = S* — GH,whereGH Is
the generalized Hartley measure.
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Axioms for uncertainty measures on credal sets

Axiom 1c.LetP € Cr(X). ThenUy(P) =01if P is
a singleton and/c(P) =0if P =P (1), B C X.

Axiom 2c. Letp : X — Y be an injection. Then
Ur (P?) = Ur (P), Ux (P¥) = Ux (P),
Uc (P?) = Ug (P) foranyP € Cr(X).

Axiom 3c. Let X, Y be finite setsy : X — Y and
P € CT(X) ThenUt (P) > Urp (PSO)

Axiom 4c. If P, P, € Cr(X) andP; D P,, then
Uy (P1) = Uy (P2) andUp (P) > Ur (P5).
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Axiom 5c. Let X, Y be finite setsPx = P (1.4)),

A C X, andPy € Cr(Y). Consider a credal set
P* € CT(X X Y), defined by[)>l< = Py Xy Py.
Then

Ur (P*) = Ur (Px) + Ur (Py).

Axiom 6¢. LetP € Cr(X x Y) andPy = { Py},
wherePy € M, (Y). Then

Ur(P) = > Pr {y}) Ur (P},) + Ur (Py),

yeY
whereP|, = {P,|P € P}.
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Axiom 7c. Let X, Y be finite sets and
P e Cr(X xY). Then

Ur (P) < Ur (Px) + Ur (Py) (the subadditivity
axiom).

Axiom 8c. Uq(P) + Un(P) = Up(P), P € Cr.
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The set of all possible total uncertainty measures
and Its structure

§ (M) is the set of all total uncertainty measures on
Mpe;.

P1.F (M) is a convex cone, i.€f; € § (M),
c;, = 0,0 =12, imp|i6861f1 + CQfQ = S(Mbel); and
—f & 8 (M) forany f £ 0inF (My).
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Normalization conditions:

Let X = {z1,2,} and P € M,,.(X) such that
P ({z1}) = 0.5. Then

Sap (Mper) =
{feF M) lf (nxy) =a, f(P)=0b}.

Axiom 4 impliesthate > b > 0. Any f Z 0 In
Sa,b (Mbel) If a > 0.

Proposition.For anya > 0, §.0 (M) = {GH },
whereG H Is the generalized Hartley measure with

GH (nix)) = a, | X| =2.
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F(u) is the set of focal elements pfe M,,,;.

Mye114(X) is the set of all possible belief measures on
2% with disjoint focal elements.

PropositionLet f € §ap (Mper), 1t € Mperja(X), and
let m be the Mobius transform qf. Then

f(u)=a > m(B)lg,|B|-b Z B)lg, m(B).

BeF(u) BeF(u
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< IS nonstrict order o/,,; defined byu; < u» for
p1 € My (X) andus € My (Y') if there is a mapping
p:Y — X such thaju! < uo.

P2. < is transitive onM;,.; andUr (1) > Up(us) if
[ = 2.

An upper bound of an arbitra®j; € ., (Mper):
U;’b (,u — inf {UT ‘V S Mbel\da ,u},

A lower bound of an arbitrar/; € o, (Mpe):
US’ (1) = sup {Ur(v)|v € Myeya, pp < v}
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P3.U%" (1), U%" (1) do not depend on a chosen
Ur € Fup (My) by Proposition 3.

Proposition.The following statements are true:

iy Q;C}’b < Ur € [7%’6 foranyUr € §op (Mper);
2) Ur" = S%
3) U = GH.

PA. UL & Fop (Mye) if a > 0andb = 0.

Question: whethell"” is a total uncertainty measure
or not?
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Providing the uniqgueness of a total uncertainty
measure under the law of conflict-nonspecificity
transformation

A measure of nonspecificity consists of 2 parts:

U (1) = sup {Uc(9)lg € Miu(X),g > p} = Uo(p)
IS the amount of nonspecificity, which can be
transformed to conflict;

U](\?) (1) = Un(p) — U](\})(u) Is the amount of
nonspecificity, which cannot be transformed to
conflict.
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Suppose that/ ](\})(u) can be transformed to pure
conflict. Then

UN (1) =
sup{Uc(P)|P € M, (X),P > pu} — Uc(p).

We have that/r = U](Vl) + U](VQ) + Uc, Where
St = U](\P + Uc Is a total uncertainty measure.
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Assume that/ ](VQ) IS a total uncertainty measure.

ThenUr € §. (M) is defined uniquely and it is
represented by

Ur=5"+GH,
where

S* € §yy (M) is the upper entropy:

GH € F. 10 (M) is the generalized Hartley
measure.

In particular, ifa = b, thenUr = S*.
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Open problems

1. Are sets§..0 (Ma—mon)s Sao (Cr) empty? Itis
likely that§ .0 (Ma—imon) # 0, i.€. the generalized

Hartley measure can be linearly extended to the set of
2-monotone measures.

2. Are setsS,, (Mper), a > 0,a > b > 0, singletons?

3. What kind of additional justifiable properties
should measures of nonspecificity and conflict
POSSess?
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