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Basic concepts of imprecise probabilities

• Classical probability theory works with single
probability measures.

• The theory of imprecise probabilities works with
sets of probability measures.

In this lecture we consider probability measures
defined on the powerset2X of a finite set
X = {x1, ..., xn}.

Mpr(X) is the set of all probability measures on2X .
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Credal sets

In this lecture a credal set is understood as a closed
convex set of probability measures with a finite
number of extreme points. IfP is a credal set and
Pk ∈ Mpr(X), k = 1, ...,m, are its extreme points
then

P =

{

m
∑

k=1

aiPi|ai > 0,
m
∑

k=1

ai = 1

}

.

– p. 3/83



LetX = {x1, x2, x3}, then any credal set is convex
subset of triangle consisting of points(p1, p2, p3):
pi > 0, p1 + p2 + p3 = 1.
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Monotone measures

LetX be a finite set. A set functionµ : 2X → [0, 1] is
called a monotone measure if

1. µ(∅) = 0, µ(X) = 1 (norming);

2. A ⊆ B impliesµ(A) 6 µ(B) (monotonicity).

Notation:

• Mmon(X) is the set of all monotone measures on
2X ;

• µ1 6 µ2 for µ1, µ2 ∈ Mmon(X) if µ1(A) 6 µ2(A)

for all A ∈ 2X .
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Lower probabilities

A monotone measureµ is called a lower probability if
there is aP ∈ Mpr such thatµ 6 P .

Any lower probabilityµ defines a credal set

P(µ) = {P ∈ Mpr(X)|P > µ}.
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Let µ be a lower probability on2X , where
X = {x1, x2, x3}, then extreme points ofP(µ) can be
found by solving the following inequalities:











































p1 > µ ({x1}) ,

p2 > µ ({x2}) ,

p3 > µ ({x3}) ,

p1 + p2 > µ ({x1, x2}) ,

p1 + p3 > µ ({x1, x3}) ,

p2 + p3 > µ ({x2, x3}) ,

p1 + p2 + p3 = 1.

Clearly lower probabilities are less general than credal
sets.
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Upper probabilities

A monotone measureµ is called an upper probability
if there is aP ∈ Mpr such thatµ > P .

Any upper probability generate a credal set
{P ∈ Mpr(X)|P 6 µ}.

It is possible to consider only lower probabilities. Let
µ be an upper probability. Introduce into
consideration a measureµd(A) = 1− µ(Ac). The
measureµd is called dual ofµ. Clearlyµd andµ
generate the same credal set
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Coherent lower probabilities

A lower probabilityµ is called a coherent lower
probability if for anyA ∈ 2X there is aP ∈ Mpr such
thatµ 6 P andµ(A) = P (A).

Any coherent lower probability can be generated as
follows: if P is a credal set then

µ(A) = min
P∈P

P (A), A ∈ 2X ,

is a coherent lower probability.
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Coherent upper probabilities

An upper probabilityµ is called a coherent upper
probability if for anyA ∈ 2X there is aP ∈ Mpr such
thatµ > P andµ(A) = P (A).

Any coherent upper probability can be generated as
follows: if P is a credal set then

µ(A) = max
P∈P

P (A), A ∈ 2X ,

is a coherent upper probability.
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2-monotone measures

A monotone measure is called 2-monotone if the
following inequality holds:

µ(A) + µ(B) 6 µ(A ∩ B) + µ(A ∪B).

for the dual measure the following inequality holds:

µd(A) + µd(B) > µd(A ∩ B) + µd(A ∪ B).

This measure is called 2-alternative. It is known that
any 2-monotone measure is a coherent lower
probability, and any 2-alternative measure is a
coherent upper probability.
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Belief and plausibility measures

Belief and plausibility measures are defined by means
of a basic probability assignment. A basic probability
assignmentm is a non-negative set function on2X

such that

1. m(∅) = 0;

2.
∑

A∈2X
m(A) = 1 (norming).

Then
Bel(A) =

∑

B⊆A

m(B) andPl(B) =
∑

B∩A6=∅

m(A).

The setA is called focal for somem if m(A) > 0.
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Some times, it is useful to represent belief functions
using{0, 1}-valued measures:

η〈B〉(A) =

{

1, B ⊆ A,

0, otherwise.

Then
Bel(A) =

∑

B∈2X
m(B)η〈B〉(A).

The sense ofη〈B〉 is the following. It describes
situation when we know that the random variable
definitely takes values from the setB, but we don’t
know any additional information.
Clearly,Pl = Beld.
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Possibility and necessity measures

A possibility measurePos is such thatPos ∈ Mmon,

Pos(A ∪ B) = max{Pos(A), Pos(B)} A,B ∈ 2X .

A necessity measureNec is such thatNec ∈ Mmon,

Nec(A ∩B) = min{Nec(A), Nec(B)} A,B ∈ 2X .

The dual of a necessity measure is a possibility
measure. Any necessity measure is a belief measure.
A belief measure is a necessity measure if focal
elements form a chain.
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Möbius transform

The set of all set functions on2X is a linear space and
the system of set functions

{

η〈B〉

}

B∈2X
is the basis of

it. We can find the representation

µ =
∑

B∈2X
m(B)η〈B〉

of anyµ : 2X → R using the Möbius transform:

m(B) =
∑

A⊆B

(−1)|B\A|µ(A).
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Projections of measures

Let µ ∈ Mmon(X) andϕ : X → Y , thenµϕ is a
monotone measure on2Y defined by

µϕ(B) = µ ({x ∈ X|ϕ(x) ∈ B), whereB ∈ 2Y .

Let µ ∈ Mmon(X × Y ) then marginal measuresµX

andµY are defined by

1. µX(A) = µ(A× Y ) for A ∈ 2X ;

2. µY (A) = µ(X × A) for A ∈ 2Y .
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Projections of credal sets

The same operations are analogously defined for
credal sets:

LetP ∈ Cr(X) andϕ : X → Y then

P
ϕ = {Pϕ|P ∈ P} .

LetP ∈ Cr(X × Y ) then marginal credal setsPX

andPY are defined by

PX = {PX |P ∈ P} andPY = {PY |P ∈ P}.
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Shannon entropy

Let P be a probability measure on2X then the
Shannon entropy is defined by

S(P ) = −c
∑

xi∈X

P ({xi}) lnP ({xi}), wherec > 0.

If information is measured in bits, and the information
of one bit is equal to 1 then

S(P ) = −
∑

xi∈X

P ({xi}) lg2 P ({xi}).

The Shannon entropy measures conflict in the
information.
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Hartley measure

Let us assume that we have the information that the
random variable takes definitely a value from an
non-empty setA ⊆ X , The uncertainty of this
information is measured by a Hartley measure:

H(A) = c ln |A|.

If information is measured in bits, and the information
of one bit is equal to 1 then

H(A) = lg2 |A|.

The Hartley measure reflects the non-specificity in the
information. – p. 19/83



Types of uncertainty in the theory of imprecise
probabilities

Conflict. It refers to probability measures.

Non-specificity.It refers to the choice of a probability
measure from the possible alternatives.

Types of uncertainty measures:

• UN is a measure of non-specificity;
• UC is a measure of conflict;
• UT is a measure of total uncertainty.
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Requirements for choosing uncertainty measures
suggested by George J. Klir

Subaddivity:The amount of uncertainty in a joint
representation of evidence (defined on Cartesian
product) cannot be greater then the sum of amounts of
uncertainty in the associated marginal representations
of evidence.

Additivity: The amount of uncertainty in a joint
representation of evidence is equal to the sum of the
amounts of uncertainty in the associated marginal
representations of evidence if and only if the marginal
representations are non-interactive according to the
rules of uncertainty calculus involved.
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Monotonicity: When evidence can be ordered in the
uncertainty theory employed (as in possibility theory),
the relevant uncertainty measure must preserve this
ordering.

Continuity: Any measure of uncertainty must be
continuous functional.

Expansibility:Expanding the universal set by
alternatives that are not supported by evidence must
not affect the amount of uncertainty.

Symmetry:The amount of uncertainty does not
change when elements of the universal set are
rearranged.
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Range:The range of uncertainty is[0,M ], where0
must be assigned to the unique uncertainty function
that describe full certainty andM depends on the size
of the universal set involved and on the chosen unit of
measurement (normalization).

Branching/Consistency:When uncertainty can be
computed in multiple ways, all acceptable within
within the calculus of the uncertainty theory involved,
the results must be the same (consistent).

Normalization:A measurement unite defined by
specifying what the amount should be for a particular
(and usually very simple) uncertainty function.
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Axioms for choosing an uncertanty measure on
Mpr

Subaddivity:Let P ∈ Mpr(X × Y ), then
UT (PX) + UT (PY ) > UT (P ).

Additivity: Let P ∈ Mpr(X × Y ) andP = PX × PY ,
thenUT (PX) + UT (PY ) = UT (P ).

Continuity:UT is a continuous functional.

Expansibility:Let P ∈ Mpr(X) and letϕ : X → Y
be a injection such thatX ⊆ Y andϕ(x) = x for all
x ∈ X. ThenUT (P

ϕ) = UT (P ).
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Symmetry:Let P ∈ Mpr(X) and letϕ : X → X be a
bijection, thenUT (P

ϕ) = UT (P ).

Range:UT : Mpr → [0,+∞) andUT (P ) = 0 iff P is
a Dirac measure, i.e. there isx ∈ X such that
P ({x}) = 1.

Normalization:LetX = {x1, x2} andP ∈ Mpr(X) is
such thatP ({x1}) = P ({x2}) = 0.5. Then
UT (P ) = 1.
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Remarks

1. It is well known that the above requirements lead to
the Shannon entropy functional:

S(P ) = −
∑

xi∈X

P ({xi}) lg2 P ({xi}).

2. The additivity axiom has the following
interpretation through random variables: if random
variablesξX ξY are independent, then

UT (ξX , ξY ) = UT (ξX) + UT (ξY ).
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3. The additivity property of Shannon entropy can be
understood also as

S(ξX , ξY ) = S(ξX |ξY ) + S(ξY ),

and the last expression can be taken as an additivity
axiom.

4. The additivity axiom for general theories of
imprecise probabilities must be based on more general
independence principles than in the classical
probability theory.
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5. It is hard to understand what continuity means for
functionals on credal sets.

6. Some times monotonicity requirement can be
formulated as: Additional information reduces
uncertainty.

7. It is possible to introduce one axiom that includes
symmetry and expansibility axioms:

Let P ∈ Mpr(X) and letϕ : X → Y be a injection.
ThenUT (P

ϕ) = UT (P ).
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Independent principles in the theory of imprecise
probabilities

Notation:

X is a finite non-empty set;

Here we consider all possible sets of probability
measures on2X .

The set of all possible such objects is denoted by
Spr(X).
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General definition

LetP ∈ Spr (X × Y ), whereX andY are finite
nonempty sets. Assume thatP is the joint description
of two random variables,ξX andξY , with values inX
andY , respectively. We say thatξY is irrelevant to ξX
if knowing an exact discription ofξY has no influence
on the description ofξX . They areindependentif ξX
is irrelevant toξY andξY is irrelevant toξX .

Question:How this general definition can be viewed
through concieved types of uncertainty: conflict and
nonspecificity?
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Independence in probability theory

Let P ∈ Mpr(X × Y ) be the joint description ofξX
andξY , and letPX andPY be marginal probability
measures.

AssumeξY takes the valuey ∈ Y . Then the
information aboutξX is described byP|y ∈ Mpr(X),
defined by

P|y(A) =
P (A× {y})
P (X × {y})

,

whereA ∈ 2X andP (X × {y}) 6= 0.
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ξY is irrelevantto ξX iff
P|y = PX for anyy ∈ Y with PY ({y}) 6= 0.

Random variablesξX andξY areindependent
if ξX is irrelevant toξY , andξY is irrelevant toξX .

It is well known that in probability theory irrelevance
implies independence, andP = PX × PY .
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Two types of conditioning

1. Let we know the exact descriptionPY ∈ PY , of the
random variable,ξY . Then

P|PY
= {µ ∈ P|µY = PY }

is the conditioning givenPY .

2. Let we know both the probability distribution and
the true valuey ∈ Y of ξY in the experiment. Then for
anyy ∈ Y with PY ({y}) > 0

P|PY ,y =
{

µ|y|µ ∈ P|PY

}

is the conditioning givenPY andy ∈ Y .
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Precise general definition.

We say thatξY is fully irrelevant(or irrelevant) toξX
iff

P|PY ,y =
(

P|PY

)

X
= PX

for anyPY ∈ PY and anyy ∈ Y with PY ({y}) > 0.

ξX andξY are calledfully independent(or
independent)if the full irrelevance is fulfilled in both
directions.
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Independence related to nonspecificity (marginal
independence)

ξY is marginally irrelevantto ξX if

(

P|PY

)

X
= PX for anyPY ∈ PY .

ξX andξY are calledmarginally independentif the
marginal irrelevance is fulfilled in both directions.
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Independence related to conflict (epistemical
independence)

LetP|y =
⋃

PY ∈PY |PY ({y})>0

P|PY ,y.

ThenξY is epistemically irrelevantto ξX if

P|y = PX for anyy ∈ Y such thatP|y 6= ∅.

ξX andξY are calledepistemically independentif the
epistemical irrelevance is fulfilled in both directions.
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Examles

Let random variablesξX andξY be described by a set
P ∈ Spr (X × Y ). Then

a) they are independent if
P = {PX × PY |PX ∈ PX , PY ∈ PY };

b) ξY is irrelevant toξX if
P = {P ∈ Mpr (X × Y ) |PX ∈ PX , PY ∈ PY }

andPX = P
(

η〈B〉

)

for some nonempty setB ⊆ X.
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Main result

TheoremLet random variablesξX andξY be jointly
described by a credal setP ∈ Spr(X × Y ). ThenξY
is fully irrelevant toξX iff ξY is marginally and
epistemically irrelevant toξX .

It is possible to show by an example that there are
cases when marginal and epistemical irrelevance does
not imply full irrelevance in general.
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Products
The inverse problem: How to define the joint
description of independent sources of information
using marginals?
The solution is based on the maximum uncertainty
principle and on the following. If random variablesξX
andξY are independent and described by setsPX and
PY . Then among their possible joint descriptions
there is a largest set defined by

Pmax = {P ∈ Mpr (X × Y )|
∀x ∈ X : P|x, PY ∈ PY ;

∀y ∈ Y : P|y, PX ∈ PX

}

.

This set is called the product ofPX andPY and
denoted byPX ×PY .
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Other products

The marginal independence implies the following
product.

PX ×N PY =
{P ∈ Mpr (X × Y ) |PX ∈ PX , PY ∈ PY }.

Under the assumption thatξY is irrelevant toξX , we
get the following largest set:

PX ×I PY =
{

P ∈ Mpr (X × Y )|PY ∈ PY ;∀y ∈ Y : P|y, PX ∈ PX

}

.
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Properties

if PX andPY are credal sets, then the epistemic
independence implies the introduced product
PX ×PY .

It is possible to show that if ifPX andPY are credal
sets are credal sets, thenPX ×PY , PX ×N PY ,
PX ×I PY are also credal sets, i.e. the introduced
operations can be performed within credal sets.
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Strong independence

LetPX ∈ Cr (X) andPY ∈ Cr (Y ). Then a credal
set inCr (X × Y ), being a convex closure of the set
{PX × PY |PX ∈ PX , PY ∈ PY } describesstrong
independenceof credal setsPX andPY . We denote
this product byPX ×S PY .

The strong independence give us the smallest set of
probability measures, for which independence is
fulfilled. This implies from the next proposition.
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Proposition. Let independent random variablesξX
andξY be described by a credal setP ∈ Cr(X × Y ).
Then

(i) ξY is irrelevant toξX iff
PX ×S PY ⊆ P ⊆ PX ×I PY ;

(ii) ξX andξY are independent iff
PX ×S PY ⊆ P ⊆ PX ×PY .
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Möbius product

Let µX ∈ Mbel(X), µY ∈ Mbel(Y ) and letmX , mY be
their basic probability assingments.

Then the Möbius product ofµX andµY is a belief
measureµ ∈ Mbel(X × Y ) with a basic probability
assingment

m(A×B) = mX(A)mY (B) (m is equal to0 on other
subsets ofX × Y ).

The Möbius product ofµX andµY is denoted by
µ = µX ×M µY .
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The probabilistic interpretation of M öbius product

Let µ ∈ Mbel(X) and letm be its basic probability
assingment. Thenµ can be concieved as a description
of random valueξ with values in2X such that
Pr (ξ = A) = m(A).

Thenµ(A) = Pr (ξ ⊆ A).

Let ξ be a random value with values in2X×Y andξX ,
ξY be its projections onX andY , respectively. Then

Pr (ξX = A) = Pr {prXξ = A},

Pr (ξY = B) = Pr {prY ξ = B}.
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ξX andξY are independent according to the usual
definition if for anyA ∈ 2X andB ∈ 2Y

Pr (ξX = A) Pr (ξY = B) = Pr {prXξ = A, prY ξ = B} .

If ξX andξY are independent, in addition, by known
marginalsµX ∈ Mbel(X) andµY ∈ Mbel(Y ) their
joint descriptionµ ∈ Mbel(X × Y ) according to the
maximum uncertainty principle can be defined as

µ = µX ×M µY .
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Paper: A.G. Bronevich, G.J. Klir Axioms for
Uncertainty Measures on Belief Functions and
Credal Sets

Objectives for investigation:Introducing axioms for a
total uncertainty measure and its disaggregation on
belief functions and credal sets under the principle of
uncertainty invariance.
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Previous works

1. It was established that if we consider coherent
lower probabilities, there are two types of uncertainty
"conflict" and "nonspecificity". One can find other
terms in the literature, for example, "conflict" =
ŞrandomnessŞ, "nonspecificity" = "imprecision". 2.

There is an opinion that measures of uncertainty
interact in additive manner, i.e. there is a measure of
total uncertaintyUT that accumulates additively two
types of uncertainty by

UT = UN + UC ,
whereUN is a measure of non-specificity andUC is a
measure of conflict.
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3. LetU be an uncertainty measure. What kinds of
properties it should possess? There is an opinion that
these properties should generalize properties of the
Shannon entropy and the Hartley measure.

Let us remind that theShannon entropyS is the
functional defined on the set of probability measures
by

S(P ) = −c
∑

ω∈Ω

P ({ω}) lnP ({ω}),

whereP ∈ Mpr andc > 0 is chosen by using the
normalization (boundary) condition.
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TheHartley measureH is used when we have the
only information about random variableξ that it takes
value in a setA. This information can be described by
a{0, 1}-valued necessity measureη〈A〉 and by
definition

H
(

η〈A〉
)

= c ln (|A|) ,

wherec > 0 is chosen by using the normalization
condition.

– p. 50/83



These measures have the following properties:

P1.Symmetry:S (Pϕ) = S(P ),

H
(

ηϕ〈A〉

)

= H
(

η〈A〉
)

for any bijectionϕ : Ω1 → Ω2.

P2.Label Independency:S (Pϕ) = S(P ),

H
(

ηϕ〈A〉

)

= H
(

η〈A〉
)

for any bijectionΩ1 → Ω2.

P3.Expansibility:S (Pϕ) = S(P ),

H
(

ηϕ〈A〉

)

= H
(

η〈A〉
)

for any injectionϕ : Ω1 → Ω2

such thatΩ1 ⊂ Ω2 andϕ(ω) = ω for eachω ∈ Ω.
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P4.Additivity: S (PX × PY ) = S (PX) + S (PY ),
H

(

η〈A×B〉

)

= H
(

η〈A〉
)

+H
(

η〈B〉

)

.

P5.Subadditivity:Let Ω = X × Y , P ∈ Mpr(Ω) and
C ⊆ Ω. ThenS (P ) 6 S (PX) + S (PY ),
H

(

η〈C〉

)

6 H
(

η〈prXC〉

)

+H
(

η〈prY C〉

)

.

Let us notice that P2 => P1 and P1, P2 and P3 can be
equivalently changed to

P1 - P3.S (Pϕ) = S(P ), H
(

ηϕ〈A〉

)

= H
(

η〈A〉
)

for

any injectionϕ : Ω1 → Ω2.
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If we go to more general theories of imprecise
probabilities, then there are questions: How to
generalize these properties? What new properties can
be considered as necessary ones?

Because of many approaches to independence in the
theory of imprecise probabilities, it is not clear how
define additivity properties of uncertainty measures.
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Harmanec’s axioms for a total uncertainty
measure onMbel

R0. Functionality. A measure of total uncertainty is a
functionalUT : Mbel → [0,+∞).

R1. Label Independency.Let X, Y be finite
nonempty sets andϕ : X → Y be a bijection. Then
UT (µ

ϕ) = UT (µ) for anyµ ∈ Mbel(X).
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R2. Continuity.Let µ ∈ Mbel(X), m be the Möbius
transform ofµ. Then the function
f(x) = UT

(

µ− xη〈A〉 + xη〈B〉

)

, which is defined for
arbitrary nonempty setsA,B ∈ 2X and any
x ∈ [−m(B),m(A)], is continuous on
[−m(B),m(A)].

R3. Expansibility.Let X andY be finite nonempty
sets,X ⊂ Y , andϕ : X → Y be an injection, defined
by ϕ(x) = x for all x ∈ X. ThenUT (µ

ϕ) = UT (µ)
for anyµ ∈ Mbel(X).

R4. Subadditivity.Let µ ∈ Mbel (X × Y ), then
UT (µX) + UT (µY ) > UT (µ).
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R5. Additivity. Let µX ∈ Mbel(X), µY ∈ Mbel(Y ),
and letµ ∈ Mbel (X × Y ) be the Möbius product of
µX andµY . ThenUT (µX) + UT (µY ) = UT (µ).

R6. Monotone Dispensability.Let µ ∈ Mbel(X) and
m be the Möbius transform ofµ. If ν ∈ Mbel(X) can
be represented asν =

∑

A∈2X\∅

m(A)µA, where

µA ∈ Mbel(X) andµA 6 η〈A〉 for all A ∈ 2X\∅, then
UT (µ) 6 UT (ν).
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R7. Probabilistic Normalization.If X = {x1, x2},
P ∈ Mpr(X), andP ({x1}) = P ({x2}) = 0.5. Then
UT (P ) = 1.

R8. Nonspecificity Normalization.If X = {x1, x2},
thenUT

(

η〈X〉

)

= 1.
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Questions:

1. How to generalize continuity axiom R3 for credal
sets?
2. How to generalize additivity axiom R6 for credal
sets?
3. Why axiom R7 is presented in this form? May be it
is better to use

R10. Strong Monotone Dispensability.Let
µ, ν ∈ Mbel(X) andµ > ν. ThenUT (µ) 6 UT (ν)
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4. Why it is required (see axioms R8 and R9) that
UT

(

η〈X〉

)

= UT (P ) for X = {x1, x2} and for the
probability measureP defined in R8?

R1-R5 can be easily reformulated for credal sets.

D. Harmanec has proved that the upper entropy:

S∗(µ) = sup {S(P )|P ∈ P(µ)}

satisfies axioms R1-R9 and this is the smallest one
among functionals obeying axioms R1-R9.
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Possible disaggregations ofS∗

1. UT = S∗, UN = GH, UC = S∗ −GH,

whereGH is the generalized Hartley measure.

If µ =
∑

A∈2X\∅

m(A)η〈A〉, then

GH(µ) = c
∑

A∈2X\∅

m(A) ln |A| .

2. UT = S∗, UN = S∗ − S∗, UC = S∗,
whereS∗ is the minimal entropy defined by

S∗(µ) = inf {S(P )|P ∈ P(µ)} .
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Properties of uncertainty measures

S∗ GH S∗ −GH S∗ − S∗ S∗

subadditivity + + - - -
additivity w.r.t.
Möbius product + + + - -
addivity w.r.t.

strong
independence + - - + +
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Questions:

1. Is the property of subadditivity essential for
measures of nonspecificity and measures of conflict?

2. How the generalized Hartley measure can be
generalized for credal sets?

3. Does a justifiable subadditive measure of conflict
exist or does not?

4. What additivity properties are essential for total
uncertainty measures, measures of nonspecificity and
measures of conflict?

5. Is a total uncertainty measure unique or is not?
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To answer these questions, it is necessary

1. To introduce a system of axioms for uncertainty
measures, which can be equivalently formulated for
belief functions and credal sets.

2. To look critically at independence principles in the
theory of imprecise probabilities through the problem
of defining uncertainty measures with properties,
which are similar to ones of the Shannon entropy.

– p. 63/83



Axioms for a total uncertainty measure and its
disaggregation on belief functions

UT is a measure of total uncertainty;
UN is a measure of nonspecificity;
UC is a measure of conflict.

Axiom 1. Let µ ∈ Mbel(X). ThenUN(µ) = 0 if
µ ∈ Mpr(X) andUC(µ) = 0 if µ = η〈B〉, B ∈ 2X\∅.

Axiom 2. Let ϕ : X → Y be an injection, i.e.
ϕ (x1) 6= ϕ (x2) if x1 6= x2. ThenUT (µ

ϕ) = UT (µ),
UN (µϕ) = UN (µ), UC (µϕ) = UC (µ) for any
µ ∈ Mbel(X).
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Partial cases of Axiom 2:

Symmetry Axiom ifY = X andϕ is a bijection;

Label Independency Axiom ifϕ is a bijection;

Expansibility Axiom ifX ⊆ Y is an injection such
thatϕ(x) = x for all x ∈ X.

Axiom 3. Let µ ∈ Mbel(X), Y ⊆ X, andϕ : X → Y
with ϕ(x) ∈ ϕ−1 (ϕ(x)) for anyx ∈ X. Then
UT (µ) > UT (µ

ϕ).

Axiom 4. If µ1, µ2 ∈ Mbel(X) andµ1 6 µ2, then
UN(µ1) > UN(µ2) andUT (µ1) > UT (µ2).
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Axiom 5. Let µ = µX ×M µY , whereµX ∈ Mbel(X),
µY ∈ Mbel(Y ), andµX = η〈A〉 for someA ⊆ X. Then
UT (µ) = UT (µX) + UT (µY ).

Axiom 6. Let µ ∈ Mbel (X × Y ) andµY ∈ Mpr (Y ).
Then

UT (µ) =
∑

y∈Y

µY ({y})UT

(

µ|y

)

+ UT (µY ) ,

whereµ|y(A) =
µ (A× {y})
µY ({y})

, A ∈ 2X .
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Axiom 6 is the generalization of the property of
Shannon entropy:S (ξ, η) = S(ξ|η) + S(η), whereξ
andη are random variables with values inX andY .

Axiom 7. Let µ ∈ Mbel(X × Y ). Then
UT (µ) ≤ UT (µX) + UT (µY ) (the subadditivity
axiom).

Axiom 8. UC(µ) + UN(µ) = UT (µ) for anyµ ∈ Mbel.

– p. 67/83



Corollaries from axioms

Corollary 1.Let µ1, µ2 ∈ Mbel(X),
µ = aµ1 + (1− a)µ2 for a ∈ [0, 1].

Then
aUT (µ1) + (1− a)UT (µ2) 6 UT (µ).
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Corollary 2.Let µ =
∑m

k=1 akµk, where
µk ∈ Mbel (Xk), ak > 0, k = 1, ...,m,

∑m
k=1 ak = 1,

andXk, k = 1, ...,m, be pairwise disjoint finite
nonempty sets, i.e.{Xk}

m
k=1 is a partition of

X =
⋃m

k=1Xk. Then

UT (µ) =
m
∑

k=1

akUT (µk) + UT (µ
ϕ),

whereϕ : X → {X1, ..., Xm} is such thatϕ(x) = Xk

if x ∈ Xk.
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Corollary 3.LetP ∈ Mpr(X). ThenUT (P ) = S(P ),
whereS is the Shannon entropy.

Corollary 4.Letµ ∈ Mbel (Ω) andµ = η〈A〉,
A ∈ 2Ω\∅. ThenUT (µ) = H (µ), whereH is the
Hartley measure.

Corollary 5.Letµ =
∑m

k=1 akµk, where
µk ∈ Mbel(X), ak > 0, k = 1, ...,m,

∑m
k=1 ak = 1,

and letP ∈ Mpr ({1, ...,m}) be such that
P ({k}) = ak, k = 1, ...,m. Then

m
∑

k=1

akUT (µk) + UT (P ) > UT (µ) .
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P1.The maximal entropyS∗ satisfies all the axioms
for a total uncertainty measure onMbel.

P2.Possible disaggregations ofS∗ onMbel:

UT = S∗, UC = S∗, UN = S∗ − S∗, whereS∗ is the
minimal entropy;

UT = S∗, UN = GH, UC = S∗ −GH, whereGH is
the generalized Hartley measure.
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Axioms for uncertainty measures on credal sets

Axiom 1c. Let P ∈ Cr(X). ThenUN(P) = 0 if P is
a singleton andUC(P) = 0 if P = P

(

η〈B〉

)

, B ⊆ X.

Axiom 2c. Let ϕ : X → Y be an injection. Then
UT (P

ϕ) = UT (P), UN (Pϕ) = UN (P),
UC (Pϕ) = UC (P) for anyP ∈ Cr(X).

Axiom 3c. Let X, Y be finite sets,ϕ : X → Y and
P ∈ Cr(X). ThenUT (P) > UT (P

ϕ).

Axiom 4c. If P1,P2 ∈ Cr(X) andP1 ⊇ P2, then
UN (P1) > UN (P2) andUT (P1) > UT (P2).
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Axiom 5c. Let X, Y be finite sets,PX = P
(

η〈A〉
)

,
A ⊆ X, andPY ∈ Cr(Y ). Consider a credal set
P

∗ ∈ Cr(X × Y ), defined byP∗ = PX ×N PY .
Then

UT (P
∗) = UT (PX) + UT (PY ).

Axiom 6c. Let P ∈ Cr(X × Y ) andPY = {PY },
wherePY ∈ Mpr (Y ). Then

UT (P) =
∑

y∈Y

PY ({y})UT

(

P|y

)

+ UT (PY ),

whereP|y =
{

P|y|P ∈ P
}

.
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Axiom 7c. Let X, Y be finite sets and
P ∈ Cr(X × Y ). Then
UT (P) ≤ UT (PX) + UT (PY ) (the subadditivity
axiom).

Axiom 8c.UC(P) + UN(P) = UT (P), P ∈ Cr.
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The set of all possible total uncertainty measures
and its structure

F (Mbel) is the set of all total uncertainty measures on
Mbel.

P1.F (Mbel) is a convex cone, i.e.fi ∈ F (Mbel),
ci > 0,i = 1, 2, impliesc1f1 + c2f2 ∈ F (Mbel), and
−f /∈ F (Mbel) for anyf 6≡ 0 in F (Mbel).
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Normalization conditions:

LetX = {x1, x2} andP ∈ Mpr(X) such that
P ({x1}) = 0.5. Then

Fa,b (Mbel) =
{

f ∈ F (Mbel) |f
(

η〈X〉

)

= a, f (P ) = b
}

.

Axiom 4 implies thata > b > 0. Any f 6≡ 0 in
Fa,b (Mbel) if a > 0.

Proposition.For anya > 0, Fa,0 (Mbel) = {GH},
whereGH is the generalized Hartley measure with
GH

(

η〈X〉

)

= a, |X| = 2.
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F(µ) is the set of focal elements ofµ ∈ Mbel.

Mbel|d(X) is the set of all possible belief measures on
2X with disjoint focal elements.

Proposition.Letf ∈ Fa,b (Mbel), µ ∈ Mbel|d(X), and
letm be the Möbius transform ofµ. Then

f(µ) = a
∑

B∈F(µ)

m(B) lg2 |B|−b
∑

B∈F(µ)

m(B) lg2m(B).
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4 is nonstrict order onMbel defined byµ1 4 µ2 for
µ1 ∈ Mbel(X) andµ2 ∈ Mbel(Y ) if there is a mapping
ϕ : Y → X such thatµϕ

1 6 µ2.

P2.4 is transitive onMbel andUT (µ1) ≥ UT (µ2) if
µ1 4 µ2.

An upper bound of an arbitraryUT ∈ Fa,b (Mbel):

Ūa,b
T (µ) = inf

{

UT (ν)|ν ∈ Mbel|d, ν 4 µ
}

;.

A lower bound of an arbitraryUT ∈ Fa,b (Mbel):

Ua,b
T (µ) = sup

{

UT (ν)|ν ∈ Mbel|d, µ 4 ν
}

.
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P3. Ūa,b
T (µ), Ua,b

T (µ) do not depend on a chosen
UT ∈ Fa,b (Mbel) by Proposition 3.

Proposition.The following statements are true:

1)Ua,b
T 6 UT 6 Ūa,b

T for anyUT ∈ Fa,b (Mbel);
2)Ua,a

T = S∗;

3) Ūa,0
T = GH.

P4.Ua,b
T /∈ Fa,b (Mbel) if a > 0 andb = 0.

Question: whether̄Ua,b
T is a total uncertainty measure

or not?
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Providing the uniqueness of a total uncertainty
measure under the law of conflict-nonspecificity
transformation

A measure of nonspecificity consists of 2 parts:

U
(1)
N (µ) = sup {UC(g)|g ∈ Mbel(X), g > µ} − UC(µ)

is the amount of nonspecificity, which can be
transformed to conflict;

U
(2)
N (µ) = UN(µ)− U

(1)
N (µ) is the amount of

nonspecificity, which cannot be transformed to
conflict.
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Suppose thatU (1)
N (µ) can be transformed to pure

conflict. Then

U
(1)
N (µ) =

sup {UC(P )|P ∈ Mpr(X), P > µ} − UC(µ).

We have thatUT = U
(1)
N + U

(2)
N + UC , where

S∗ = U
(1)
N + UC is a total uncertainty measure.
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Assume thatU (2)
N is a total uncertainty measure.

ThenUT ∈ Fa,b (Mbel) is defined uniquely and it is
represented by

UT = S∗ +GH,
where

S∗ ∈ Fb,b (Mbel) is the upper entropy:

GH ∈ Fa−b,0 (Mbel) is the generalized Hartley
measure.

In particular, ifa = b, thenUT = S∗.
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Open problems

1. Are setsFa,0 (M2−mon), Fa,0 (Cr) empty? It is
likely thatFa,0 (M2−mon) 6= ∅, i.e. the generalized
Hartley measure can be linearly extended to the set of
2-monotone measures.

2. Are setsFa,b (Mbel), a > 0, a > b > 0, singletons?

3. What kind of additional justifiable properties
should measures of nonspecificity and conflict
possess?
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