

Some Generalizations of Formal Concept Analysis

Stanislav Krajči
Šafárik University
Košice, Slovakia

0
 Why to fuzzify?

Classical formal concept analysis

- Ganter \& Wille
- an object-attribute model
- columns - attributes - the set A
- rows - objects - the set B
- values - a relation $R \subseteq A \times B$
- a Galois connection (\uparrow, \downarrow)
- if $X \subseteq B$ then $\uparrow(X)=\{a \in A:(\forall b \in X)\langle a, b\rangle \in R\}$
- if $Y \subseteq A$ then $\downarrow(Y)=\{b \in B:(\forall a \in Y)\langle a, b\rangle \in R\}$
- a concept - such (X, Y) that $\uparrow(X)=Y$ and $\downarrow(Y)=X$
- $\left(X_{1}, Y_{1}\right) \leq\left(X_{2}, Y_{2}\right)$ iff $X_{1} \subseteq X_{2}$ iff $Y_{1} \supseteq Y_{2}$
- the set of concepts order by \leq is a complete lattice called the concept lattice

Non-binary data

- what to do with these data?

	a	b	c	d	e
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0	0.9	0.3	0.2	0.4

Non-binary data

- what to do with these data?

	a	b	c	d	e
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0	0.9	0.3	0.2	0.4

- R is not a relation anymore but fuzzy relation, i. e. $R: A \times B \rightarrow[0,1]$

Non-binary data

- what to do with these data?

	a	b	c	d	e
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0	0.9	0.3	0.2	0.4

- R is not a relation anymore but fuzzy relation, i. e. $R: A \times B \rightarrow[0,1]$
- $R(a, b)$ - the degree
to which the object b carries the attribute a

Non-binary data

- what to do with these data?

	a	b	c	d	e
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0	0.9	0.3	0.2	0.4

- R is not a relation anymore but fuzzy relation, i. e. $R: A \times B \rightarrow[0,1]$
- $R(a, b)$ - the degree
to which the object b carries the attribute a
- how to modify this approach so we could use the concept lattice construction?

Non-binary data

- what to do with these data?

	a	b	c	d	e
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0	0.9	0.3	0.2	0.4

- R is not a relation anymore but fuzzy relation, i. e. $R: A \times B \rightarrow[0,1]$
- $R(a, b)$ - the degree
to which the object b carries the attribute a
- how to modify this approach so we could use the concept lattice construction?
- e. g. how to (re)define mappings \uparrow and \downarrow ?

Possible answers

Possible answers

- Ganter \& Wille - scaling

Possible answers

- Ganter \& Wille - scaling
- Burusco \& Fuentes-Gonzalez

Possible answers

- Ganter \& Wille - scaling
- Burusco \& Fuentes-Gonzalez
- but losing of Galois-connection-ess

Possible answers

- Ganter \& Wille - scaling
- Burusco \& Fuentes-Gonzalez
- but losing of Galois-connection-ess
- Bělohlávek and Pollandt (independently) - the first real fuzzification with nice properties

Possible answers

- Ganter \& Wille - scaling
- Burusco \& Fuentes-Gonzalez
- but losing of Galois-connection-ess
- Bělohlávek and Pollandt (independently) - the first real fuzzification with nice properties
- Ďuráková, SK, Snášel, Vojtáš
- defuzzification by cuts

Possible answers

- Ganter \& Wille - scaling
- Burusco \& Fuentes-Gonzalez
- but losing of Galois-connection-ess
- Bělohlávek and Pollandt (independently) - the first real fuzzification with nice properties
- Ďuráková, SK, Snášel, Vojtás
- defuzzification by cuts
- ...

1
 One-sided fuzzy approach

Two important mappings

Two important mappings

- $\uparrow: \mathrm{P}(B) \rightarrow{ }^{A}[0,1]:$

$$
(\uparrow(X))(a)=\inf \{R(a, b): b \in X\}
$$

Two important mappings

- $\uparrow: \mathrm{P}(B) \rightarrow{ }^{A}[0,1]:$

$$
(\uparrow(X))(a)=\inf \{R(a, b): b \in X\}
$$

i. e. $\uparrow(X)$ is a fuzzy set of attributes, the value in a column $a \in A$ of which is the minimum from values of this column in rows from X

Two important mappings

- $\uparrow: \mathrm{P}(B) \rightarrow{ }^{A}[0,1]:$

$$
(\uparrow(X))(a)=\inf \{R(a, b): b \in X\}
$$

i. e. $\uparrow(X)$ is a fuzzy set of attributes, the value in a column $a \in A$ of which is the minimum from values of this column in rows from X

- $\downarrow:{ }^{A}[0,1] \rightarrow P(B):$

$$
\downarrow(f)=\{b \in B:(\forall a \in A) R(a, b) \geq f(a)\}
$$

Two important mappings

- $\uparrow: \mathrm{P}(B) \rightarrow{ }^{A}[0,1]:$

$$
(\uparrow(X))(a)=\inf \{R(a, b): b \in X\}
$$

i. e. $\uparrow(X)$ is a fuzzy set of attributes, the value in a column $a \in A$ of which is the minimum from values of this column in rows from X

- $\downarrow:{ }^{A}[0,1] \rightarrow P(B):$

$$
\downarrow(f)=\{b \in B:(\forall a \in A) R(a, b) \geq f(a)\}
$$

i. e. $\downarrow(f)$ is the set of objects rows of which dominate over f

Two important mappings

- $\uparrow: \mathrm{P}(B) \rightarrow{ }^{A}[0,1]:$

$$
(\uparrow(X))(a)=\inf \{R(a, b): b \in X\}
$$

i. e. $\uparrow(X)$ is a fuzzy set of attributes, the value in a column $a \in A$ of which is the minimum from values of this column in rows from X

- $\downarrow:{ }^{A}[0,1] \rightarrow P(B):$

$$
\downarrow(f)=\{b \in B:(\forall a \in A) R(a, b) \geq f(a)\}
$$

i. e. $\downarrow(f)$ is the set of objects rows of which dominate over f

- these definitions are non-symmetric!

Example

	a	b	c	d	e
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0	0.9	0.3	0.2	0.4

Example

	a	b	c	d	e
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0	0.9	0.3	0.2	0.4

- $\{\gamma, \delta\}^{\uparrow}=\{\langle\mathrm{a}, 0.2\rangle,\langle\mathrm{b}, 0.3\rangle,\langle\mathrm{c}, 0.1\rangle,\langle\mathrm{d}, 0.2\rangle,\langle\mathrm{e}, 0.3\rangle\}$

Example

	a	b	c	d	e
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0	0.9	0.3	0.2	0.4

- $\{\gamma, \delta\}^{\uparrow}=\{\langle\mathrm{a}, 0.2\rangle,\langle\mathrm{b}, 0.3\rangle,\langle\mathrm{c}, 0.1\rangle,\langle\mathrm{d}, 0.2\rangle,\langle\mathrm{e}, 0.3\rangle\}$
- $\{\langle\mathrm{a}, 0.3\rangle,\langle\mathrm{b}, 0.3\rangle,\langle\mathrm{c}, 0.2\rangle,\langle\mathrm{d}, 0.3\rangle,\langle\mathrm{e}, 0.5\rangle\}^{\downarrow}=\{\alpha, \beta\}$

Galois connection

- $\langle\uparrow, \downarrow, \subseteq, \leq\rangle$ is a Galois connection:

Galois connection

- $\langle\uparrow, \downarrow, \subseteq, \leq\rangle$ is a Galois connection:
- if $X_{1} \subseteq X_{2}$ then $\uparrow\left(X_{1}\right) \geq \uparrow\left(X_{2}\right)$

Galois connection

- $\langle\uparrow, \downarrow, \subseteq, \leq\rangle$ is a Galois connection:
- if $X_{1} \subseteq X_{2}$ then $\uparrow\left(X_{1}\right) \geq \uparrow\left(X_{2}\right)$
- if $f_{1} \leq f_{2}$ then $\downarrow\left(f_{1}\right) \supseteq \downarrow\left(f_{2}\right)$

Galois connection

- $\langle\uparrow, \downarrow, \subseteq, \leq\rangle$ is a Galois connection:
- if $X_{1} \subseteq X_{2}$ then $\uparrow\left(X_{1}\right) \geq \uparrow\left(X_{2}\right)$
- if $f_{1} \leq f_{2}$ then $\downarrow\left(f_{1}\right) \supseteq \downarrow\left(f_{2}\right)$
- $X \subseteq \downarrow(\uparrow(X))$

Galois connection

- $\langle\uparrow, \downarrow, \subseteq, \leq\rangle$ is a Galois connection:
- if $X_{1} \subseteq X_{2}$ then $\uparrow\left(X_{1}\right) \geq \uparrow\left(X_{2}\right)$
- if $f_{1} \leq f_{2}$ then $\downarrow\left(f_{1}\right) \supseteq \downarrow\left(f_{2}\right)$
- $X \subseteq \downarrow(\uparrow(X))$
- $f \leq \uparrow(\downarrow(f))$

Galois connection

- $\langle\uparrow, \downarrow, \subseteq, \leq\rangle$ is a Galois connection:
- if $X_{1} \subseteq X_{2}$ then $\uparrow\left(X_{1}\right) \geq \uparrow\left(X_{2}\right)$
- if $f_{1} \leq f_{2}$ then $\downarrow\left(f_{1}\right) \supseteq \downarrow\left(f_{2}\right)$
- $X \subseteq \downarrow(\uparrow(X))$
- $f \leq \uparrow(\downarrow(f))$
- or equivalently

$$
f \leq \uparrow(X) \quad \text { iff } \quad X \subseteq \downarrow(f)
$$

Closure operator

Closure operator

- define a mapping cl : $\mathrm{P}(B) \rightarrow \mathrm{P}(B)$

$$
c \mathrm{c}(X)=\downarrow(\uparrow(X))
$$

Closure operator

- define a mapping cl : $\mathrm{P}(B) \rightarrow \mathrm{P}(B)$

$$
\mathrm{cl}(X)=\downarrow(\uparrow(X))
$$

- cl is a closure operator:

Closure operator

- define a mapping cl : $\mathrm{P}(B) \rightarrow \mathrm{P}(B)$

$$
\mathrm{cl}(X)=\downarrow(\uparrow(X))
$$

- cl is a closure operator:
- $X \subseteq \mathrm{cl}(X)$

Closure operator

- define a mapping cl : $\mathrm{P}(B) \rightarrow \mathrm{P}(B)$

$$
c \mathrm{c}(X)=\downarrow(\uparrow(X))
$$

- cl is a closure operator:
- $X \subseteq \mathrm{cl}(X)$
- if $X_{1} \subseteq X_{2}$ then $\operatorname{cl}\left(X_{1}\right) \subseteq \operatorname{cl}\left(X_{2}\right)$

Closure operator

- define a mapping cl : $\mathrm{P}(B) \rightarrow \mathrm{P}(B)$

$$
c \mathrm{c}(X)=\downarrow(\uparrow(X))
$$

- cl is a closure operator:
- $X \subseteq \mathrm{cl}(X)$
- if $X_{1} \subseteq X_{2}$ then $\operatorname{cl}\left(X_{1}\right) \subseteq \operatorname{cl}\left(X_{2}\right)$
- $\operatorname{cl}(X)=\operatorname{cl}(c l(X))$

One-sided fuzzy concept lattice

One-sided fuzzy concept lattice

- if $X=\mathrm{cl}(X)$
then the pair $\langle X, \uparrow(X)\rangle$ is called an one-sided fuzzy concept

One-sided fuzzy concept lattice

- if $X=\operatorname{cl}(X)$
then the pair $\langle X, \uparrow(X)\rangle$ is called an one-sided fuzzy concept
- one-sided fuzzy because:

One-sided fuzzy concept lattice

- if $X=\operatorname{cl}(X)$
then the pair $\langle X, \uparrow(X)\rangle$ is called an one-sided fuzzy concept
- one-sided fuzzy because:
- (the extent) X is a crisp set of objects

One-sided fuzzy concept lattice

- if $X=\mathrm{cl}(X)$
then the pair $\langle X, \uparrow(X)\rangle$ is called an one-sided fuzzy concept
- one-sided fuzzy because:
- (the extent) X is a crisp set of objects
- (the intent) $\uparrow(X)$ is a fuzzy set of attributes

One-sided fuzzy concept lattice

- if $X=\operatorname{cl}(X)$
then the pair $\langle X, \uparrow(X)\rangle$ is called an one-sided fuzzy concept
- one-sided fuzzy because:
- (the extent) X is a crisp set of objects
- (the intent) $\uparrow(X)$ is a fuzzy set of attributes
- both coordinates of a concept are reciprocal derivable; it is enough to consider the first one

One-sided fuzzy concept lattice

- if $X=\mathrm{cl}(X)$
then the pair $\langle X, \uparrow(X)\rangle$ is called an one-sided fuzzy concept
- one-sided fuzzy because:
- (the extent) X is a crisp set of objects
- (the intent) $\uparrow(X)$ is a fuzzy set of attributes
- both coordinates of a concept are reciprocal derivable; it is enough to consider the first one
- $\langle\{X \in \mathrm{P}(B): X=\mathrm{cl}(X)\}, \subseteq\rangle$ is a (complete) lattice operation of which are:

One-sided fuzzy concept lattice

- if $X=\mathrm{cl}(X)$
then the pair $\langle X, \uparrow(X)\rangle$ is called an one-sided fuzzy concept
- one-sided fuzzy because:
- (the extent) X is a crisp set of objects
- (the intent) $\uparrow(X)$ is a fuzzy set of attributes
- both coordinates of a concept are reciprocal derivable; it is enough to consider the first one
- $\langle\{X \in \mathrm{P}(B): X=\mathrm{cl}(X)\}, \subseteq\rangle$ is a (complete) lattice operation of which are:
- $X_{1} \wedge X_{2}=X_{1} \cap X_{2}$

One-sided fuzzy concept lattice

- if $X=\mathrm{cl}(X)$
then the pair $\langle X, \uparrow(X)\rangle$ is called an one-sided fuzzy concept
- one-sided fuzzy because:
- (the extent) X is a crisp set of objects
- (the intent) $\uparrow(X)$ is a fuzzy set of attributes
- both coordinates of a concept are reciprocal derivable; it is enough to consider the first one
- $\langle\{X \in \mathrm{P}(B): X=\mathrm{cl}(X)\}, \subseteq\rangle$ is a (complete) lattice operation of which are:
- $X_{1} \wedge X_{2}=X_{1} \cap X_{2}$
- $X_{1} \vee X_{2}=\mathrm{cl}\left(X_{1} \cup X_{2}\right)$

One-sided fuzzy concept lattice

- if $X=\mathrm{cl}(X)$
then the pair $\langle X, \uparrow(X)\rangle$ is called an one-sided fuzzy concept
- one-sided fuzzy because:
- (the extent) X is a crisp set of objects
- (the intent) $\uparrow(X)$ is a fuzzy set of attributes
- both coordinates of a concept are reciprocal derivable; it is enough to consider the first one
- $\langle\{X \in \mathrm{P}(B): X=\mathrm{cl}(X)\}, \subseteq\rangle$ is a (complete) lattice operation of which are:
- $X_{1} \wedge X_{2}=X_{1} \cap X_{2}$
- $X_{1} \vee X_{2}=\mathrm{cl}\left(X_{1} \cup X_{2}\right)$
- this lattice is called the one-sided fuzzy concept lattice

Equivalent and independent one-sided approaches

Equivalent and independent one-sided approaches

- Ben-Yahia \& Jaoua

Equivalent and independent one-sided approaches

- Ben-Yahia \& Jaoua
- roles of attributes and object were interchanged

Equivalent and independent one-sided approaches

- Ben-Yahia \& Jaoua
- roles of attributes and object were interchanged
- they used their approach for looking for attribute dependencies

Equivalent and independent one-sided approaches

- Ben-Yahia \& Jaoua
- roles of attributes and object were interchanged
- they used their approach for looking for attribute dependencies
- Bělohlávek, Sklenář, \& Zacpal
- crisply generated concepts

2
 Generalized fuzzy approach

Motivation

Motivation

- three different (types of) approaches:

Motivation

- three different (types of) approaches:
- classical/binary/crisp approach

Motivation

- three different (types of) approaches:
- classical/binary/crisp approach
- L-fuzzification

Motivation

- three different (types of) approaches:
- classical/binary/crisp approach
- L-fuzzification
- one-sided fuzzification

Motivation

- three different (types of) approaches:
- classical/binary/crisp approach
- L-fuzzification
- one-sided fuzzification
- the second two are incompatible but they have some very similar features

Motivation

- three different (types of) approaches:
- classical/binary/crisp approach
- L-fuzzification
- one-sided fuzzification
- the second two are incompatible but they have some very similar features
- a natural question arise - how to unify these approaches?

Motivation

- three different (types of) approaches:
- classical/binary/crisp approach
- L-fuzzification
- one-sided fuzzification
- the second two are incompatible but they have some very similar features
- a natural question arise - how to unify these approaches?
- hence we try to find a common platform for them all

Types of fuzziness of subsets

approach	object subsets	attribute subsets
classical	crisp	crisp
L-fuzzy	L-fuzzy	L-fuzzy
one-sided fuzzy	crisp	$[0,1]$-fuzzy

Types of fuzziness of subsets

approach	object subsets	attribute subsets
classical	crisp	crisp
L-fuzzy	L-fuzzy	L-fuzzy
one-sided fuzzy	crisp	$[0,1]$-fuzzy
generalized	D-fuzzy	C-fuzzy

Generalized fuzzy context

Generalized fuzzy context

- A, B - non-empty sets

Generalized fuzzy context

- A, B - non-empty sets
- C, D - complete lattices

Generalized fuzzy context

- A, B - non-empty sets
- C, D - complete lattices
- P - partially ordered set

Generalized fuzzy context

- A, B - non-empty sets
- C, D - complete lattices
- P - partially ordered set
- $R: A \times B \rightarrow P$

Generalized fuzzy context

- A, B - non-empty sets
- C, D - complete lattices
- P - partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \rightarrow P$

Generalized fuzzy context

- A, B - non-empty sets
- C, D - complete lattices
- P - partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \rightarrow P$
- \otimes - isotone and left-continuous in both arguments:

Generalized fuzzy context

- A, B - non-empty sets
- C, D - complete lattices
- P - partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \rightarrow P$
- \otimes - isotone and left-continuous in both arguments:

1a) if $c_{1}, c_{2} \in C, d \in D$, and $c_{1} \leq c_{2}$

Generalized fuzzy context

- A, B - non-empty sets
- C, D - complete lattices
- P - partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \rightarrow P$
- \otimes - isotone and left-continuous in both arguments:

1a) if $c_{1}, c_{2} \in C, d \in D$, and $c_{1} \leq c_{2}$ then $c_{1} \otimes d \leq c_{2} \otimes d$

Generalized fuzzy context

- A, B - non-empty sets
- C, D - complete lattices
- P - partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \rightarrow P$
- \otimes - isotone and left-continuous in both arguments:

1a) if $c_{1}, c_{2} \in C, d \in D$, and $c_{1} \leq c_{2}$ then $c_{1} \otimes d \leq c_{2} \otimes d$
1b) if $d_{1}, d_{2} \in D, d \in D$, and $d_{1} \leq d_{2}$ then $c \otimes d_{1} \leq c \otimes d_{2}$

Generalized fuzzy context

- A, B - non-empty sets
- C, D - complete lattices
- P - partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \rightarrow P$
- \otimes - isotone and left-continuous in both arguments:

1a) if $c_{1}, c_{2} \in C, d \in D$, and $c_{1} \leq c_{2}$ then $c_{1} \otimes d \leq c_{2} \otimes d$
1b) if $d_{1}, d_{2} \in D, d \in D$, and $d_{1} \leq d_{2}$ then $c \otimes d_{1} \leq c \otimes d_{2}$
2a) if $d \in D, p \in P, X \subseteq C$ and $(\forall c \in X) c \otimes d \leq p$

Generalized fuzzy context

- A, B - non-empty sets
- C, D - complete lattices
- P - partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \rightarrow P$
- \otimes - isotone and left-continuous in both arguments:

1a) if $c_{1}, c_{2} \in C, d \in D$, and $c_{1} \leq c_{2}$ then $c_{1} \otimes d \leq c_{2} \otimes d$
1b) if $d_{1}, d_{2} \in D, d \in D$, and $d_{1} \leq d_{2}$ then $c \otimes d_{1} \leq c \otimes d_{2}$
2a) if $d \in D, p \in P, X \subseteq C$ and $(\forall c \in X) c \otimes d \leq p$ then $\sup X \otimes d \leq p$

Generalized fuzzy context

- A, B - non-empty sets
- C, D - complete lattices
- P - partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \rightarrow P$
- \otimes - isotone and left-continuous in both arguments:

1a) if $c_{1}, c_{2} \in C, d \in D$, and $c_{1} \leq c_{2}$ then $c_{1} \otimes d \leq c_{2} \otimes d$
1b) if $d_{1}, d_{2} \in D, d \in D$, and $d_{1} \leq d_{2}$ then $c \otimes d_{1} \leq c \otimes d_{2}$
2a) if $d \in D, p \in P, X \subseteq C$ and $(\forall c \in X) c \otimes d \leq p$ then $\sup X \otimes d \leq p$
2b) if $c \in C, p \in P, Y \subseteq D$ and $(\forall d \in Y) c \otimes d \leq p$ then $c \otimes \sup Y \leq p$

Generalized fuzzy context

- A, B - non-empty sets
- C, D - complete lattices
- P - partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \rightarrow P$
- \otimes - isotone and left-continuous in both arguments:

1a) if $c_{1}, c_{2} \in C, d \in D$, and $c_{1} \leq c_{2}$ then $c_{1} \otimes d \leq c_{2} \otimes d$
1b) if $d_{1}, d_{2} \in D, d \in D$, and $d_{1} \leq d_{2}$ then $c \otimes d_{1} \leq c \otimes d_{2}$
2a) if $d \in D, p \in P, X \subseteq C$ and $(\forall c \in X) c \otimes d \leq p$ then $\sup X \otimes d \leq p$
2b) if $c \in C, p \in P, Y \subseteq D$ and $(\forall d \in Y) c \otimes d \leq p$ then $c \otimes \sup Y \leq p$

- note that \otimes need not be commutative!

Galois connection

Galois connection

- $\uparrow:{ }^{B} D \rightarrow{ }^{A} C:$

$$
\uparrow(g)(a)=\sup \{c \in C:(\forall b \in B) c \otimes g(b) \leq R(a, b)\}
$$

Galois connection

- $\uparrow:{ }^{B} D \rightarrow{ }^{A} C:$

$$
\uparrow(g)(a)=\sup \{c \in C:(\forall b \in B) c \otimes g(b) \leq R(a, b)\}
$$

- $\downarrow:{ }^{A} C \rightarrow{ }^{B} D:$

$$
\downarrow(f)(b)=\sup \{d \in D:(\forall a \in A) f(a) \otimes d \leq R(a, b)\}
$$

Galois connection

- $\uparrow:{ }^{B} D \rightarrow{ }^{A} C:$

$$
\uparrow(g)(a)=\sup \{c \in C:(\forall b \in B) c \otimes g(b) \leq R(a, b)\}
$$

- $\downarrow:{ }^{A} C \rightarrow{ }^{B} D:$

$$
\downarrow(f)(b)=\sup \{d \in D:(\forall a \in A) f(a) \otimes d \leq R(a, b)\}
$$

- \uparrow and \downarrow form a Galois connection:

Galois connection

- $\uparrow:{ }^{B} D \rightarrow{ }^{A} C:$

$$
\uparrow(g)(a)=\sup \{c \in C:(\forall b \in B) c \otimes g(b) \leq R(a, b)\}
$$

- $\downarrow:{ }^{A} C \rightarrow{ }^{B} D:$

$$
\downarrow(f)(b)=\sup \{d \in D:(\forall a \in A) f(a) \otimes d \leq R(a, b)\}
$$

- \uparrow and \downarrow form a Galois connection:
- if $f_{1}, f_{2} \in{ }^{B} D$ and $f_{1} \leq f_{2}$ then $\downarrow\left(f_{1}\right) \geq \downarrow\left(f_{2}\right)$
- if $g_{1}, g_{2} \in{ }^{A} C$ and $g_{1} \leq g_{2}$ then $\uparrow\left(g_{1}\right) \geq \uparrow\left(g_{2}\right)$
- if $f \in{ }^{B} D$ then $f \leq \uparrow(\downarrow(f))$
- if $g \in{ }^{A} C$ then $g \leq \downarrow(\uparrow(g))$

The basic theorem (a part)

The basic theorem (a part)

- let P have the least element $0_{p} \mathrm{~s}$. t . $0_{C} \otimes d=c \otimes 0_{D}=0_{P}$

The basic theorem (a part)

- let P have the least element $0_{p} \mathrm{~s}$. t .

$$
0_{C} \otimes d=c \otimes 0_{D}=0_{P}
$$

- then the complete lattice L is isomorphic to $\operatorname{GCL}(\ldots)$ iff

The basic theorem (a part)

- let P have the least element 0_{P} s.t. $0_{C} \otimes d=c \otimes 0_{D}=0_{P}$
- then the complete lattice L is isomorphic to $\operatorname{GCL}(\ldots)$ iff there are $\alpha: A \times C \rightarrow L, \beta: B \times D \rightarrow L$ s. t.:

The basic theorem (a part)

- let P have the least element $0_{P} \mathrm{~s}$. t.
$0_{C} \otimes d=c \otimes 0_{D}=0_{P}$
- then the complete lattice L is isomorphic to $\operatorname{GCL}(\ldots)$ iff there are $\alpha: A \times C \rightarrow L, \beta: B \times D \rightarrow L$ s. t.:
1a) α is non-increasing in the second argument

The basic theorem (a part)

- let P have the least element $0_{P} \mathrm{~s}$. t.
$0_{C} \otimes d=c \otimes 0_{D}=0_{P}$
- then the complete lattice L is isomorphic to $\operatorname{GCL}(\ldots)$ iff there are $\alpha: A \times C \rightarrow L, \beta: B \times D \rightarrow L$ s. t.:

1a) α is non-increasing in the second argument
1b) β is non-decreasing in the second argument

The basic theorem (a part)

- let P have the least element $0_{P} \mathrm{~s}$. t.
$0_{C} \otimes d=c \otimes 0_{D}=0_{P}$
- then the complete lattice L is isomorphic to $\mathrm{GCL}(\ldots)$ iff there are $\alpha: A \times C \rightarrow L, \beta: B \times D \rightarrow L$ s. t.:
1a) α is non-increasing in the second argument
1b) β is non-decreasing in the second argument
2a) $\alpha[A \times C]$ is infimum-dense

The basic theorem (a part)

- let P have the least element $0_{P} \mathrm{~s}$. t.
$0_{C} \otimes d=c \otimes 0_{D}=0_{P}$
- then the complete lattice L is isomorphic to $\mathrm{GCL}(\ldots)$ iff there are $\alpha: A \times C \rightarrow L, \beta: B \times D \rightarrow L$ s. t.:

1a) α is non-increasing in the second argument
1b) β is non-decreasing in the second argument
2a) $\alpha[A \times C]$ is infimum-dense
2b) $\beta[B \times D]$ is supremum-dense

The basic theorem (a part)

- let P have the least element $0_{P} \mathrm{~s}$. t.
$0_{C} \otimes d=c \otimes 0_{D}=0_{P}$
- then the complete lattice L is isomorphic to $\mathrm{GCL}(\ldots)$ iff there are $\alpha: A \times C \rightarrow L, \beta: B \times D \rightarrow L$ s. t.:

1a) α is non-increasing in the second argument
1b) β is non-decreasing in the second argument
2a) $\alpha[A \times C]$ is infimum-dense
2b) $\beta[B \times D]$ is supremum-dense
3) $\alpha(a, c) \geq \beta(b, d)$ iff $c \otimes d \leq R(a, b)$

This is a generalization

- this approach is really generalization of the previous ones

This is a generalization

- this approach is really generalization of the previous ones
- of course, in the classical and one-sided cases
we have to use the canonical equivalency of subsets and their characteristic functions

3
 Hedge approach

R. Bělohlávek, V. Vychodil (et al.)

Hedge

Hedge

- a (complete) residuated lattice $\langle L, \vee, \wedge, \otimes, \rightarrow, 0,1\rangle$:
- $x \otimes y \leq z$ iff $x \leq y \rightarrow z$
- \otimes - isotone in both their arguments
- \rightarrow - antitone in the first argument, isotone in the second one
- \otimes - commutative
- $x \otimes 1=1 \otimes x=x$

Hedge

- a (complete) residuated lattice $\langle L, \vee, \wedge, \otimes, \rightarrow, 0,1\rangle$:
- $x \otimes y \leq z$ iff $x \leq y \rightarrow z$
- \otimes - isotone in both their arguments
- \rightarrow - antitone in the first argument, isotone in the second one
- \otimes - commutative
- $x \otimes 1=1 \otimes x=x$
- a hedge [Hájek] - a function $*$ on L s. t.:
- $1_{L}^{*}=1_{L}$
- $a^{*} \leq a$
- $(a \rightarrow b)^{*} \leq a^{*} \rightarrow b^{*}$
- $a^{* *}=a^{*}$ (or equivalently $* \circ *=*$)

A concept lattice with hedges $(1 / 3)$

- A, B - sets, $R: A \times B \rightarrow L$ - an incidence relation

A concept lattice with hedges $(1 / 3)$

- A, B - sets, $R: A \times B \rightarrow L$ - an incidence relation
- $*_{A}, *_{B}$ - hedges on L

A concept lattice with hedges $(1 / 3)$

- A, B - sets, $R: A \times B \rightarrow L$ - an incidence relation
- $*_{A}, *_{B}$ - hedges on L
- operations:
- $\uparrow:{ }^{B} L \rightarrow{ }^{A} L:$

$$
\uparrow(g)(a)=\sup \left\{c \in L:(\forall b \in B) c \otimes(g(b))^{* B} \leq R(a, b)\right\}
$$

- $\downarrow:{ }^{A} L \rightarrow{ }^{B} L$:

$$
\downarrow(f)(b)=\sup \left\{d \in L:(\forall a \in A)(f(a))^{*_{A}} \otimes d \leq R(a, b)\right\}
$$

A concept lattice with hedges (2/3)

- for arbitrary $h: U \rightarrow L$ define

$$
\lfloor h\rfloor=\{\langle u, a\rangle \in U \times L: a \leq h(u)\}
$$

- for arbitrary $H \subseteq U \times L$ define

$$
\lceil H\rceil(u)=\bigvee\{a \in L:\langle u, a\rangle \in H\}
$$

- for arbitrary $h: U \rightarrow L$ and $*: L \rightarrow L$ define

$$
h^{*}(u)=(h(u))^{*}
$$

- for arbitrary $H \subseteq U \times L$ and $*: L \rightarrow L$ define

$$
H^{*}=\left\{\left\langle x, a^{*}\right\rangle:\langle x, a\rangle \in H\right\}
$$

A concept lattice with hedges $(3 / 3)$

- $Y^{\curlyvee}=\left\lfloor\lceil Y\rceil^{\uparrow}\right\rfloor^{*_{A}}$
- $X^{\curlywedge}=\left\lfloor\lceil X\rceil^{\downarrow}\right\rfloor^{*_{B}}$
- $\langle\langle a, c\rangle,\langle b, d\rangle\rangle \in R_{\langle\curlywedge, r\rangle}$ iff $c \otimes d \leq R(a, b)$

A concept lattice with hedges (3/3)

- $Y^{\curlyvee}=\left\lfloor\lceil Y\rceil^{\uparrow}\right\rfloor^{*_{A}}$
- $X^{\curlywedge}=\left\lfloor\lceil X\rceil^{\downarrow}\right\rfloor^{*_{B}}$
- $\langle\langle a, c\rangle,\langle b, d\rangle\rangle \in R_{\langle\curlywedge, r\rangle}$ iff $c \otimes d \leq R(a, b)$
- $R_{\langle\lambda, r\rangle}$ is a classical set

A concept lattice with hedges (3/3)

- $Y^{\curlyvee}=\left\lfloor\lceil Y\rceil^{\uparrow}\right\rfloor^{*_{A}}$
- $X^{\curlywedge}=\left\lfloor\lceil X\rceil^{\downarrow}\right\rfloor^{*_{B}}$
- $\langle\langle a, c\rangle,\langle b, d\rangle\rangle \in R_{\langle\curlywedge, \curlyvee\rangle}$ iff $c \otimes d \leq R(a, b)$
- $R_{\langle\lambda, r\rangle}$ is a classical set
- $\operatorname{CLH}(\ldots)$ is isomorphic to the ordinary concept lattice $\mathrm{CL}\left(A \times *_{A}[L], B \times *_{B}[L], \curlywedge, \curlyvee, R_{\langle\curlywedge, \curlyvee\rangle}\right)$

Relationship between these generalizations

- the lattices

$$
\operatorname{GCL}\left(A, B, *_{A}[L], *_{B}[L], L, R, \otimes\right)
$$

and

$$
\mathrm{CL}\left(A \times *_{A}[L], B \times *_{B}[L], \curlywedge, \curlyvee, R_{\langle\curlywedge, \curlyvee\rangle}\right)
$$

are (canonically) isomorphic

Relationship between these generalizations

- the lattices

$$
\operatorname{GCL}\left(A, B, *_{A}[L], *_{B}[L], L, R, \otimes\right)
$$

and

$$
\mathrm{CL}\left(A \times *_{A}[L], B \times *_{B}[L], \curlywedge, \curlyvee, R_{\langle\curlywedge, \curlyvee\rangle}\right)
$$

are (canonically) isomorphic and the isomorphisms are:

- if $g: B \rightarrow *_{B}[L], f: A \rightarrow *_{A}[L]$ then

$$
\phi(\langle g, f\rangle)=\langle\lfloor g\rfloor,\lfloor f\rfloor\rangle
$$

- if $S \subseteq B \times *_{B}[L], T \subseteq A \times *_{A}[L]$ then

$$
\psi(\langle S, T\rangle)=\langle\lceil S\rceil,\lceil T\rceil\rangle
$$

Relationship between these generalizations

- the lattices

$$
\operatorname{GCL}\left(A, B, *_{A}[L], *_{B}[L], L, R, \otimes\right)
$$

and

$$
\mathrm{CL}\left(A \times *_{A}[L], B \times *_{B}[L], \curlywedge, \curlyvee, R_{\langle\curlywedge, \curlyvee\rangle}\right)
$$

are (canonically) isomorphic and the isomorphisms are:

- if $g: B \rightarrow *_{B}[L], f: A \rightarrow *_{A}[L]$ then

$$
\phi(\langle g, f\rangle)=\langle\lfloor g\rfloor,\lfloor f\rfloor\rangle
$$

- if $S \subseteq B \times *_{B}[L], T \subseteq A \times *_{A}[L]$ then

$$
\psi(\langle S, T\rangle)=\langle\lceil S\rceil,\lceil T\rceil\rangle
$$

- $\operatorname{GCL}(\ldots)$ and $\mathrm{CLH}(\ldots)$ are (canonically) isomorphic

3

Heterogeneous approach

joined work with my colleague Ondrej Krídlo and my students L'. Antoni, B. Macek, and L. Pisková

Motivation

Motivation

- J. Medina and M. Ojeda-Aciego use the multi-adjoint approach in logic-programming

Motivation

- J. Medina and M. Ojeda-Aciego use the multi-adjoint approach in logic-programming
- they bring this original idea into formal concept analysis and take one \otimes for each object

Motivation

- J. Medina and M. Ojeda-Aciego use the multi-adjoint approach in logic-programming
- they bring this original idea into formal concept analysis and take one \otimes for each object
- this idea is not (straightforwardly) covered by the previous approach, so we try to implant this to it

Motivation

- J. Medina and M. Ojeda-Aciego use the multi-adjoint approach in logic-programming
- they bring this original idea into formal concept analysis and take one \otimes for each object
- this idea is not (straightforwardly) covered by the previous approach, so we try to implant this to it
- moreover we diversify all what can be diversified

Heterogeneous formal context

Heterogeneous formal context

- A and B are non-empty sets

Heterogeneous formal context

- A and B are non-empty sets
- for each $a \in A$, C_{a} is a complete lattice

Heterogeneous formal context

- A and B are non-empty sets
- for each $a \in A$,
C_{a} is a complete lattice
- for each $b \in B$,
D_{b} is a complete lattice
- for each $a \in A$ and $b \in B$, $P_{a, b}$ is a partially ordered set

Heterogeneous formal context

- A and B are non-empty sets
- for each $a \in A$, C_{a} is a complete lattice
- for each $b \in B$,
D_{b} is a complete lattice
- for each $a \in A$ and $b \in B$,
$P_{a, b}$ is a partially ordered set
- for each $b \in B$,
$\otimes_{a, b}: C_{a} \times D_{b} \rightarrow P_{a, b}$
which is isotone and left-continuous in both arguments

Heterogeneous formal context

- A and B are non-empty sets
- for each $a \in A$,
C_{a} is a complete lattice
- for each $b \in B$,
D_{b} is a complete lattice
- for each $a \in A$ and $b \in B$,
$P_{a, b}$ is a partially ordered set
- for each $b \in B$,
$\otimes_{a, b}: C_{a} \times D_{b} \rightarrow P_{a, b}$
which is isotone and left-continuous in both arguments
- R is a function from $A \times B$ s. t.
for each $a \in A$ and $b \in B$,
$R(a, b) \in P_{a, b}$

Two mappings

Two mappings

- $F=\Pi_{a \in A} C_{a}$
(i. e. the set of all functions f with the domain A s.t. $f(a) \in C_{a}$, for all $a \in A$)

Two mappings

- $F=\Pi_{a \in A} C_{a}$
(i. e. the set of all functions f with the domain A s. t. $f(a) \in C_{a}$, for all $a \in A$)
- $G=\Pi_{b \in B} D_{b}$
(i. e. the set of all functions g with the domain B s.t. $g(b) \in D_{b}$, for all $b \in B$)

Two mappings

- $F=\Pi_{a \in A} C_{a}$
(i. e. the set of all functions f with the domain A s. t. $f(a) \in C_{a}$, for all $a \in A$)
- $G=\Pi_{b \in B} D_{b}$
(i. e. the set of all functions g with the domain B s.t. $g(b) \in D_{b}$, for all $b \in B$)
- $\uparrow: G \rightarrow F:$

$$
(\uparrow(g))(a)=\sup \left\{c \in C_{a}:(\forall b \in B) c \otimes_{a, b} g(b) \leq R(a, b)\right\}
$$

Two mappings

- $F=\Pi_{a \in A} C_{a}$
(i. e. the set of all functions f with the domain A s. t.
$f(a) \in C_{a}$, for all $a \in A$)
- $G=\Pi_{b \in B} D_{b}$
(i. e. the set of all functions g with the domain B s. t. $g(b) \in D_{b}$, for all $b \in B$)
- $\uparrow: G \rightarrow F:$

$$
(\uparrow(g))(a)=\sup \left\{c \in C_{a}:(\forall b \in B) c \otimes_{a, b} g(b) \leq R(a, b)\right\}
$$

- $\downarrow: F \rightarrow G:$

$$
(\downarrow(f))(b)=\sup \left\{d \in D_{b}:(\forall a \in A) f(a) \otimes_{a, b} d \leq R(a, b)\right\}
$$

Galois connection

- let $f \in F, g \in G$; then TFAE:

Galois connection

- let $f \in F, g \in G$; then TFAE:

1) $f \leq \uparrow(g)$

Galois connection

- let $f \in F, g \in G$; then TFAE:

1) $f \leq \uparrow(g)$
2) $g \leq \downarrow(f)$

Galois connection

- let $f \in F, g \in G$; then TFAE:
$\begin{array}{ll}\text { 1) } & f \leq \uparrow(g) \\ \text { 2) } g \leq \downarrow(f) \\ \text { 3) }(\forall a \in A)(\forall b \in B) \quad f(a) \otimes_{a, b} g(b) \leq R(a, b)\end{array}$

Galois connection

- let $f \in F, g \in G$; then TFAE:

1) $f \leq \uparrow(g)$
2) $g \leq \downarrow(f)$
3) $(\forall a \in A)(\forall b \in B) \quad f(a) \otimes_{a, b} g(b) \leq R(a, b)$

- \uparrow and \downarrow form a Galois connection

Galois connection

- let $f \in F, g \in G$; then TFAE:

$$
\begin{aligned}
& \text { 1) } f \leq \uparrow(g) \\
& \text { 2) } g \leq \downarrow(f) \\
& \text { 3) }(\forall a \in A)(\forall b \in B) \quad f(a) \otimes_{a, b} g(b) \leq R(a, b)
\end{aligned}
$$

- \uparrow and \downarrow form a Galois connection
- 1a) $g_{1} \leq g_{2}$ implies $\uparrow\left(g_{1}\right) \geq \uparrow\left(g_{2}\right)$

1b) $f_{1} \leq f_{2}$ implies $\downarrow\left(f_{1}\right) \geq \downarrow(2)$
2a) $g \leq \downarrow(\uparrow(g))$
2b) $f \leq \uparrow(\downarrow(f))$

Galois connection

- let $f \in F, g \in G$; then TFAE:

$$
\begin{aligned}
& \text { 1) } f \leq \uparrow(g) \\
& \text { 2) } g \leq \downarrow(f) \\
& \text { 3) }(\forall a \in A)(\forall b \in B) \quad f(a) \otimes_{a, b} g(b) \leq R(a, b)
\end{aligned}
$$

- \uparrow and \downarrow form a Galois connection
- 1a) $g_{1} \leq g_{2}$ implies $\uparrow\left(g_{1}\right) \geq \uparrow\left(g_{2}\right)$

1b) $f_{1} \leq f_{2}$ implies $\downarrow\left(f_{1}\right) \geq \downarrow(2)$
2a) $g \leq \downarrow(\uparrow(g))$
2b) $f \leq \uparrow(\downarrow(f))$
3a) $\uparrow(g)=\uparrow(\downarrow(\uparrow(g)))$
3b) $\downarrow(f)=\downarrow(\uparrow(\downarrow(f)))$

Heterogeneous concept lattice

Heterogeneous concept lattice

- a concept - a pair $\langle g, f\rangle$ from $G \times F$ s. t. $\uparrow(g)=f$ and $\downarrow(f)=g$

Heterogeneous concept lattice

- a concept - a pair $\langle g, f\rangle$ from $G \times F$ s. t. $\uparrow(g)=f$ and $\downarrow(f)=g$
- if $\left\langle g_{1}, f_{1}\right\rangle$ and $\left\langle g_{2}, f_{2}\right\rangle$ are concepts then $g_{1} \leq g_{2}$ iff $f_{1} \geq f_{2}$

Heterogeneous concept lattice

- a concept - a pair $\langle g, f\rangle$ from $G \times F$ s. t. $\uparrow(g)=f$ and $\downarrow(f)=g$
- if $\left\langle g_{1}, f_{1}\right\rangle$ and $\left\langle g_{2}, f_{2}\right\rangle$ are concepts then $g_{1} \leq g_{2}$ iff $f_{1} \geq f_{2}$
- define $\left\langle g_{1}, f_{1}\right\rangle \leq\left\langle g_{2}, f_{2}\right\rangle$ iff $g_{1} \leq g_{2}$ iff $f_{1} \geq f_{2}$

Heterogeneous concept lattice

- a concept - a pair $\langle g, f\rangle$ from $G \times F$ s. t. $\uparrow(g)=f$ and $\downarrow(f)=g$
- if $\left\langle g_{1}, f_{1}\right\rangle$ and $\left\langle g_{2}, f_{2}\right\rangle$ are concepts then $g_{1} \leq g_{2}$ iff $f_{1} \geq f_{2}$
- define $\left\langle g_{1}, f_{1}\right\rangle \leq\left\langle g_{2}, f_{2}\right\rangle$ iff $g_{1} \leq g_{2}$ iff $f_{1} \geq f_{2}$
- a heterogeneous concept lattice $\operatorname{HCL}(A, B, \mathcal{P}, R, \mathcal{C}, \mathcal{D}, \downarrow, \uparrow, \leq)$ - the poset of all such concepts ordered by \leq

The basic theorem on heterogeneous concept lattices (1/2)

The basic theorem on heterogeneous concept lattices (1/2)

- $\mathrm{HCL}(\ldots)$ is a complete lattice:

The basic theorem on heterogeneous concept lattices (1/2)

- $\mathrm{HCL}(\ldots)$ is a complete lattice:
a)

$$
\bigwedge_{i \in I}\left\langle g_{i}, f_{i}\right\rangle=\left\langle\bigwedge_{i \in I} g_{i}, \uparrow\left(\downarrow\left(\bigvee_{i \in I} f_{i}\right)\right)\right\rangle
$$

The basic theorem on heterogeneous concept lattices (1/2)

- $\mathrm{HCL}(\ldots)$ is a complete lattice:
a)

$$
\bigwedge_{i \in I}\left\langle g_{i}, f_{i}\right\rangle=\left\langle\bigwedge_{i \in I} g_{i}, \uparrow\left(\downarrow\left(\bigvee_{i \in I} f_{i}\right)\right)\right\rangle
$$

b)

$$
\bigvee_{i \in I}\left\langle g_{i}, f_{i}\right\rangle=\left\langle\downarrow\left(\uparrow\left(\bigvee_{i \in I} g_{i}\right)\right), \bigwedge_{i \in I} f_{i}\right\rangle
$$

The basic theorem on heterogeneous concept lattices (2/2)

The basic theorem on heterogeneous concept lattices (2/2)

- for each $a \in A, b \in B$, let $P_{a, b}$ have the least element $0_{P_{a, b}}$ s. t. $0_{C_{a}} \bullet a, b d=c \bullet{ }_{a, b} 0_{D_{b}}=0_{P_{a, b}}$, for all $c \in C_{a}, d \in D_{b}$.

The basic theorem on heterogeneous concept lattices (2/2)

- for each $a \in A, b \in B$, let $P_{a, b}$ have the least element $0_{P_{a, b}}$ s. t . $0_{C_{a}} \bullet a, b d=c \bullet{ }_{a, b} 0_{D_{b}}=0_{P_{a, b}}$, for all $c \in C_{a}, d \in D_{b}$.
- a complete lattice L is isomorphic to $\operatorname{HCL}(\ldots)$ iff

The basic theorem on heterogeneous concept lattices (2/2)

- for each $a \in A, b \in B$, let $P_{a, b}$ have the least element $0_{P_{a, b}}$ s. t. $0_{C_{a}} \bullet a, b d=c \bullet{ }_{a, b} 0_{D_{b}}=0_{P_{a, b}}$, for all $c \in C_{a}, d \in D_{b}$.
- a complete lattice L is isomorphic to $\operatorname{HCL}(\ldots)$ iff there are $\alpha: \bigcup_{a \in A}\left(\{a\} \times C_{a}\right) \rightarrow L, \beta: \bigcup_{b \in B}\left(\{b\} \times D_{b}\right) \rightarrow L$ s. t.:

The basic theorem on heterogeneous concept lattices (2/2)

- for each $a \in A, b \in B$, let $P_{a, b}$ have the least element $0_{P_{a, b}}$ s. t. $0_{C_{a}} \bullet_{a, b} d=c \bullet_{a, b} 0_{D_{b}}=0_{P_{a, b}}$, for all $c \in C_{a}, d \in D_{b}$.
- a complete lattice L is isomorphic to $\mathrm{HCL}(\ldots)$ iff there are $\alpha: \bigcup_{a \in A}\left(\{a\} \times C_{a}\right) \rightarrow L, \beta: \bigcup_{b \in B}\left(\{b\} \times D_{b}\right) \rightarrow L$ s. t.:
1a) α does not increase in the second argument

The basic theorem on heterogeneous concept lattices (2/2)

- for each $a \in A, b \in B$,
let $P_{a, b}$ have the least element $0_{P_{a, b}}$ s. t.
$0_{C_{a}} \bullet a, b d=c \bullet{ }_{a, b} 0_{D_{b}}=0_{P_{a, b}}$,
for all $c \in C_{a}, d \in D_{b}$.
- a complete lattice L is isomorphic to $\operatorname{HCL}(\ldots)$ iff there are $\alpha: \bigcup_{a \in A}\left(\{a\} \times C_{a}\right) \rightarrow L, \beta: \bigcup_{b \in B}\left(\{b\} \times D_{b}\right) \rightarrow L$ s. t.:
1a) α does not increase in the second argument
1b) β does not decrease in the second argument

The basic theorem on heterogeneous concept lattices (2/2)

- for each $a \in A, b \in B$,
let $P_{a, b}$ have the least element $0_{P_{a, b}}$ s. t.
$0_{C_{a}} \bullet a, b d=c \bullet{ }_{a, b} 0_{D_{b}}=0_{P_{a, b}}$,
for all $c \in C_{a}, d \in D_{b}$.
- a complete lattice L is isomorphic to $\operatorname{HCL}(\ldots)$ iff there are $\alpha: \bigcup_{a \in A}\left(\{a\} \times C_{a}\right) \rightarrow L, \beta: \bigcup_{b \in B}\left(\{b\} \times D_{b}\right) \rightarrow L$ s. t.:
1a) α does not increase in the second argument
1b) β does not decrease in the second argument
2a) $\operatorname{Rng}(\alpha)$ is infimum-dense in L

The basic theorem on heterogeneous concept lattices (2/2)

- for each $a \in A, b \in B$,
let $P_{a, b}$ have the least element $0_{P_{a, b}}$ s. t.
$0_{C_{a}} \bullet_{a, b} d=c \bullet_{a, b} 0_{D_{b}}=0_{P_{a, b}}$,
for all $c \in C_{a}, d \in D_{b}$.
- a complete lattice L is isomorphic to $\mathrm{HCL}(\ldots)$ iff there are $\alpha: \bigcup_{a \in A}\left(\{a\} \times C_{a}\right) \rightarrow L, \beta: \bigcup_{b \in B}\left(\{b\} \times D_{b}\right) \rightarrow L$ s. t.:
1a) α does not increase in the second argument
1b) β does not decrease in the second argument
2a) $\operatorname{Rng}(\alpha)$ is infimum-dense in L
2b) $\operatorname{Rng}(\beta)$ is supremum-dense in L

The basic theorem on heterogeneous concept lattices (2/2)

- for each $a \in A, b \in B$,
let $P_{a, b}$ have the least element $0_{P_{a, b}}$ s. t.
$0_{C_{a}} \bullet_{a, b} d=c \bullet_{a, b} 0_{D_{b}}=0_{P_{a, b}}$,
for all $c \in C_{a}, d \in D_{b}$.
- a complete lattice L is isomorphic to $\mathrm{HCL}(\ldots)$ iff there are $\alpha: \bigcup_{a \in A}\left(\{a\} \times C_{a}\right) \rightarrow L, \beta: \bigcup_{b \in B}\left(\{b\} \times D_{b}\right) \rightarrow L$ s. t.:
1a) α does not increase in the second argument
1b) β does not decrease in the second argument
2a) $\operatorname{Rng}(\alpha)$ is infimum-dense in L
2b) $\operatorname{Rng}(\beta)$ is supremum-dense in L

3) for every $a \in A, b \in B$ and $c \in C_{a}, d \in D_{b}$
$\alpha(a, c) \geq \beta(b, d)$ iff $c \bullet_{a, b} d \leq R(a, b)$

The plan of the proof $(1 / 5)$

The plan of the proof $(1 / 5)$

- for the first part:

The plan of the proof $(1 / 5)$

- for the first part:
a) if $\left\{g_{i}: i \in I\right\} \subseteq G$ then

$$
\uparrow\left(\bigvee_{i \in I} g_{i}\right)=\bigwedge_{i \in I} \uparrow\left(g_{i}\right)
$$

The plan of the proof $(1 / 5)$

- for the first part:
a) if $\left\{g_{i}: i \in I\right\} \subseteq G$ then

$$
\uparrow\left(\bigvee_{i \in I} g_{i}\right)=\bigwedge_{i \in I} \uparrow\left(g_{i}\right)
$$

b) if $\left\{f_{i}: i \in I\right\} \subseteq F$ then

$$
\downarrow\left(\bigvee_{i \in I} f_{i}\right)=\bigwedge_{i \in I} \downarrow\left(f_{i}\right)
$$

The plan of the proof $(2 / 5)$

The plan of the proof $(2 / 5)$

- for one implication of the second part, define singleton functions:

The plan of the proof $(2 / 5)$

- for one implication of the second part, define singleton functions:
a) $S_{a}^{c} \in F$, for each $a \in A$ and $c \in C_{a}$:

$$
S_{a}^{c}(x)= \begin{cases}c & \text { if } x=a \\ 0_{C_{a}} & \text { elsewhere }\end{cases}
$$

The plan of the proof $(2 / 5)$

- for one implication of the second part, define singleton functions:
a) $S_{a}^{c} \in F$, for each $a \in A$ and $c \in C_{a}$:

$$
S_{a}^{c}(x)= \begin{cases}c & \text { if } x=a \\ 0_{C_{a}} & \text { elsewhere }\end{cases}
$$

b) $T_{b}^{d} \in G$, for each $b \in B$ and $d \in D_{b}$:

$$
T_{b}^{d}(y)= \begin{cases}d & \text { if } y=b \\ 0_{D_{b}} & \text { elsewhere }\end{cases}
$$

The plan of the proof $(2 / 5)$

- for one implication of the second part, define singleton functions:
a) $S_{a}^{c} \in F$, for each $a \in A$ and $c \in C_{a}$:

$$
S_{a}^{c}(x)= \begin{cases}c & \text { if } x=a \\ 0_{C_{a}} & \text { elsewhere }\end{cases}
$$

b) $T_{b}^{d} \in G$, for each $b \in B$ and $d \in D_{b}$:

$$
T_{b}^{d}(y)= \begin{cases}d & \text { if } y=b \\ 0_{D_{b}} & \text { elsewhere }\end{cases}
$$

- a) $\left(\downarrow\left(S_{a}^{c}\right)\right)(b)=\sup \left\{d \in D_{b}: c \bullet_{a, b} d \leq R(a, b)\right\}$

The plan of the proof $(2 / 5)$

- for one implication of the second part, define singleton functions:
a) $S_{a}^{c} \in F$, for each $a \in A$ and $c \in C_{a}$:

$$
S_{a}^{c}(x)= \begin{cases}c & \text { if } x=a \\ 0_{C_{a}} & \text { elsewhere }\end{cases}
$$

b) $T_{b}^{d} \in G$, for each $b \in B$ and $d \in D_{b}$:

$$
T_{b}^{d}(y)= \begin{cases}d & \text { if } y=b \\ 0_{D_{b}} & \text { elsewhere }\end{cases}
$$

- a) $\left(\downarrow\left(S_{a}^{c}\right)\right)(b)=\sup \left\{d \in D_{b}: c \bullet_{a, b} d \leq R(a, b)\right\}$
b) $\left(\uparrow\left(T_{b}^{d}\right)\right)(a)=\sup \left\{c \in C_{a}: c \bullet_{a, b} d \leq R(a, b)\right\}$

The plan of the proof $(3 / 5)$

- at first, for $H=\operatorname{HCL}(\ldots)$, define:

The plan of the proof $(3 / 5)$

- at first, for $H=\operatorname{HCL}(\ldots)$, define:
a) $\alpha_{H}(a, c)=\left\langle\downarrow\left(S_{a}^{c}\right), \uparrow\left(\downarrow\left(S_{a}^{c}\right)\right)\right\rangle$

The plan of the proof $(3 / 5)$

- at first, for $H=\operatorname{HCL}(\ldots)$, define:
a) $\alpha_{H}(a, c)=\left\langle\downarrow\left(S_{a}^{c}\right), \uparrow\left(\downarrow\left(S_{a}^{c}\right)\right)\right\rangle$
b) $\beta_{H}(b, d)=\left\langle\downarrow\left(\uparrow\left(T_{b}^{d}\right)\right), \uparrow\left(T_{b}^{d}\right)\right\rangle$

The plan of the proof $(3 / 5)$

- at first, for $H=\operatorname{HCL}(\ldots)$, define:
a) $\alpha_{H}(a, c)=\left\langle\downarrow\left(S_{a}^{c}\right), \uparrow\left(\downarrow\left(S_{a}^{c}\right)\right)\right\rangle$
b) $\beta_{H}(b, d)=\left\langle\downarrow\left(\uparrow\left(T_{b}^{d}\right)\right), \uparrow\left(T_{b}^{d}\right)\right\rangle$
- then, for an arbitrary L isomorphic to H through ϕ, define:

The plan of the proof $(3 / 5)$

- at first, for $H=\operatorname{HCL}(\ldots)$, define:
a) $\alpha_{H}(a, c)=\left\langle\downarrow\left(S_{a}^{c}\right), \uparrow\left(\downarrow\left(S_{a}^{c}\right)\right)\right\rangle$
b) $\beta_{H}(b, d)=\left\langle\downarrow\left(\uparrow\left(T_{b}^{d}\right)\right), \uparrow\left(T_{b}^{d}\right)\right\rangle$
- then, for an arbitrary L isomorphic to H through ϕ, define:
a) $\alpha(a, c)=\phi\left(\alpha_{H}(a, c)\right)$

The plan of the proof $(3 / 5)$

- at first, for $H=\operatorname{HCL}(\ldots)$, define:
a) $\alpha_{H}(a, c)=\left\langle\downarrow\left(S_{a}^{c}\right), \uparrow\left(\downarrow\left(S_{a}^{c}\right)\right)\right\rangle$
b) $\beta_{H}(b, d)=\left\langle\downarrow\left(\uparrow\left(T_{b}^{d}\right)\right), \uparrow\left(T_{b}^{d}\right)\right\rangle$
- then, for an arbitrary L isomorphic to H through ϕ, define:
a) $\alpha(a, c)=\phi\left(\alpha_{H}(a, c)\right)$
b) $\beta(b, d)=\phi\left(\beta_{H}(b, d)\right)$

The plan of the proof $(4 / 5)$

- for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings

The plan of the proof $(4 / 5)$

- for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings
- define

$$
\xi(\langle g, f\rangle)=\inf \{\alpha(a, f(a)): a \in A\}
$$

The plan of the proof $(4 / 5)$

- for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings
- define

$$
\xi(\langle g, f\rangle)=\inf \{\alpha(a, f(a)): a \in A\}
$$

or, equivalently

$$
\xi(\langle g, f\rangle)=\sup \{\beta(b, g(b)): b \in B\}
$$

The plan of the proof $(4 / 5)$

- for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings
- define

$$
\xi(\langle g, f\rangle)=\inf \{\alpha(a, f(a)): a \in A\}
$$

or, equivalently

$$
\xi(\langle g, f\rangle)=\sup \{\beta(b, g(b)): b \in B\}
$$

- for $\ell \in L$, define:

The plan of the proof $(4 / 5)$

- for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings
- define

$$
\xi(\langle g, f\rangle)=\inf \{\alpha(a, f(a)): a \in A\}
$$

or, equivalently

$$
\xi(\langle g, f\rangle)=\sup \{\beta(b, g(b)): b \in B\}
$$

- for $\ell \in L$, define:
a) $f_{\ell}(a)=\sup \left\{c \in C_{a}: \alpha(a, c) \geq \ell\right\}$

The plan of the proof $(4 / 5)$

- for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings
- define

$$
\xi(\langle g, f\rangle)=\inf \{\alpha(a, f(a)): a \in A\}
$$

or, equivalently

$$
\xi(\langle g, f\rangle)=\sup \{\beta(b, g(b)): b \in B\}
$$

- for $\ell \in L$, define:
a) $f_{\ell}(a)=\sup \left\{c \in C_{a}: \alpha(a, c) \geq \ell\right\}$
b) $g_{\ell}(b)=\sup \left\{d \in D_{b}: \beta(b, d) \leq \ell\right\}$

The plan of the proof $(4 / 5)$

- for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings
- define

$$
\xi(\langle g, f\rangle)=\inf \{\alpha(a, f(a)): a \in A\}
$$

or, equivalently

$$
\xi(\langle g, f\rangle)=\sup \{\beta(b, g(b)): b \in B\}
$$

- for $\ell \in L$, define:
a) $f_{\ell}(a)=\sup \left\{c \in C_{a}: \alpha(a, c) \geq \ell\right\}$
b) $g_{\ell}(b)=\sup \left\{d \in D_{b}: \beta(b, d) \leq \ell\right\}$
and then

$$
\psi(\ell)=\left\langle g_{\ell}, f_{\ell}\right\rangle
$$

The plan of the proof $(5 / 5)$

The plan of the proof $(5 / 5)$

- claims:

The plan of the proof $(5 / 5)$

- claims:
- $\psi(\ell)$ is really concept:
a) $\uparrow\left(g_{\ell}\right)=f_{\ell}$
b) $\downarrow\left(f_{\ell}\right)=g_{\ell}$

The plan of the proof $(5 / 5)$

- claims:
- $\psi(\ell)$ is really concept:
a) $\uparrow\left(g_{\ell}\right)=f_{\ell}$
b) $\downarrow\left(f_{\ell}\right)=g_{\ell}$
- ξ preserves the ordering

The plan of the proof $(5 / 5)$

- claims:
- $\psi(\ell)$ is really concept:
a) $\uparrow\left(g_{\ell}\right)=f_{\ell}$
b) $\downarrow\left(f_{\ell}\right)=g_{\ell}$
- ξ preserves the ordering
- ψ preserves the ordering

The plan of the proof $(5 / 5)$

- claims:
- $\psi(\ell)$ is really concept:
a) $\uparrow\left(g_{\ell}\right)=f_{\ell}$
b) $\downarrow\left(f_{\ell}\right)=g_{\ell}$
- ξ preserves the ordering
- ψ preserves the ordering
- $\xi(\psi(\ell))=\ell$

The plan of the proof $(5 / 5)$

- claims:
- $\psi(\ell)$ is really concept:
a) $\uparrow\left(g_{\ell}\right)=f_{\ell}$
b) $\downarrow\left(f_{\ell}\right)=g_{\ell}$
- ξ preserves the ordering
- ψ preserves the ordering
- $\xi(\psi(\ell))=\ell$
- $\psi(\xi(\langle g, f\rangle))=\langle g, f\rangle$

The plan of the proof $(5 / 5)$

- claims:
- $\psi(\ell)$ is really concept:
a) $\uparrow\left(g_{\ell}\right)=f_{\ell}$
b) $\downarrow\left(f_{\ell}\right)=g_{\ell}$
- ξ preserves the ordering
- ψ preserves the ordering
- $\xi(\psi(\ell))=\ell$
- $\psi(\xi(\langle g, f\rangle))=\langle g, f\rangle$
- all these follow that ξ is a wanted isomorphism

4

Galois-connection approach
 J. Pócs (MÚ SAV, Košice)

Galois-connection formal context

- A and B are non-empty sets
- for each $a \in A$,
C_{a} is a complete lattice
- for each $b \in B$,
D_{b} is a complete lattice

Galois-connection formal context

- A and B are non-empty sets
- for each $a \in A$,
C_{a} is a complete lattice
- for each $b \in B$,
D_{b} is a complete lattice
- for each $b \in B$,
$\phi_{a, b}, \psi_{a, b}$ are mappings s. t.
$\phi_{a, b}$ and $\psi_{a, b}$ form a Galois connection between C_{a} and D_{b}

Two mappings

Two mappings

- $\uparrow: G \rightarrow F:$

$$
(\uparrow(g))(a)=\bigwedge_{b \in B} \phi_{a, b}(g(b))
$$

Two mappings

- $\uparrow: G \rightarrow F:$

$$
(\uparrow(g))(a)=\bigwedge_{b \in B} \phi_{a, b}(g(b))
$$

- $\downarrow: F \rightarrow G:$

$$
(\downarrow(f))(b)=\bigwedge_{a \in A} \psi_{a, b}(f(a))
$$

Two mappings

- $\uparrow: G \rightarrow F:$

$$
(\uparrow(g))(a)=\bigwedge_{b \in B} \phi_{a, b}(g(b))
$$

- $\downarrow: F \rightarrow G:$

$$
(\downarrow(f))(b)=\bigwedge_{a \in A} \psi_{a, b}(f(a))
$$

- (\uparrow, \downarrow) form a Galois connection

The heterogeneous approach generalizes this one

The heterogeneous approach generalizes this one

- for each $a \in A, b \in B$, take:

The heterogeneous approach generalizes this one

- for each $a \in A, b \in B$, take:
- $P_{a, b}=\{0,1\}$

The heterogeneous approach generalizes this one

- for each $a \in A, b \in B$, take:
- $P_{a, b}=\{0,1\}$
- $\otimes_{a, b}$ s.t.
for each $c \in C_{a}, d \in D_{b}$

$$
c \otimes_{a, b} d= \begin{cases}0 & \text { if } \phi_{a, b}(c) \geq d \\ 1 & \text { elsewhere }\end{cases}
$$

The heterogeneous approach generalizes this one

- for each $a \in A, b \in B$, take:
- $P_{a, b}=\{0,1\}$
- $\otimes_{a, b}$ s.t.
for each $c \in C_{a}, d \in D_{b}$

$$
c \otimes_{a, b} d= \begin{cases}0 & \text { if } \phi_{a, b}(c) \geq d \\ 1 & \text { elsewhere }\end{cases}
$$

- $R(a, b)=0(!)$

G-ideal

- if C and D are complete lattices then $J \subseteq C \times D$ is called G-ideal if:

G-ideal

- if C and D are complete lattices then $J \subseteq C \times D$ is called G-ideal if:
- if $\left(c_{1}, d_{1}\right) \leq\left(c_{2}, d_{2}\right)$ and $\left(c_{2}, d_{2}\right) \in J$

G-ideal

- if C and D are complete lattices then $J \subseteq C \times D$ is called G-ideal if:
- if $\left(c_{1}, d_{1}\right) \leq\left(c_{2}, d_{2}\right)$ and $\left(c_{2}, d_{2}\right) \in J$ then $\left(c_{1}, d_{1}\right) \in J$

G-ideal

- if C and D are complete lattices then $J \subseteq C \times D$ is called G-ideal if:
- if $\left(c_{1}, d_{1}\right) \leq\left(c_{2}, d_{2}\right)$ and $\left(c_{2}, d_{2}\right) \in J$ then $\left(c_{1}, d_{1}\right) \in J$
- if $\left\{\left(c_{i}, d_{i}\right): i \in I\right\} \subseteq J$

G-ideal

- if C and D are complete lattices then $J \subseteq C \times D$ is called G-ideal if:
- if $\left(c_{1}, d_{1}\right) \leq\left(c_{2}, d_{2}\right)$ and $\left(c_{2}, d_{2}\right) \in J$ then $\left(c_{1}, d_{1}\right) \in J$
- if $\left\{\left(c_{i}, d_{i}\right): i \in I\right\} \subseteq J$ then

$$
\left(\bigvee_{i \in I} c_{i}, \bigwedge_{i \in I} d_{i}\right) \in J
$$

G-ideal

- if C and D are complete lattices then $J \subseteq C \times D$ is called G-ideal if:
- if $\left(c_{1}, d_{1}\right) \leq\left(c_{2}, d_{2}\right)$ and $\left(c_{2}, d_{2}\right) \in J$ then $\left(c_{1}, d_{1}\right) \in J$
- if $\left\{\left(c_{i}, d_{i}\right): i \in I\right\} \subseteq J$
then

$$
\left(\bigvee_{i \in I} c_{i}, \bigwedge_{i \in I} d_{i}\right) \in J
$$

and

$$
\left(\bigwedge_{i \in I} c_{i}, \bigvee_{i \in I} d_{i}\right) \in J
$$

G-ideals and Galois connections

G-ideals and Galois connections

- if (ϕ, ψ) is a Galois connection between C and D

G-ideals and Galois connections

- if (ϕ, ψ) is a Galois connection between C and D then

$$
\{(c, d) \in C \times D: \phi(c) \geq d\}
$$

is a G-ideal on $C \times D$

G-ideals and Galois connections

- if (ϕ, ψ) is a Galois connection between C and D then

$$
\{(c, d) \in C \times D: \phi(c) \geq d\}
$$

is a G-ideal on $C \times D$

- if J is a G-ideal on $C \times D$

G-ideals and Galois connections

- if (ϕ, ψ) is a Galois connection between C and D then

$$
\{(c, d) \in C \times D: \phi(c) \geq d\}
$$

is a G-ideal on $C \times D$

- if J is a G-ideal on $C \times D$ then $\left(\Phi_{J}, \Psi_{J}\right)$ is a Galois connection between C and D where

$$
\Phi_{J}(c)=\sup \{d \in D:(c, d) \in J\}
$$

and

$$
\Psi_{J}(d)=\sup \{c \in C:(c, d) \in J\}
$$

G-ideals and Galois connections

- if (ϕ, ψ) is a Galois connection between C and D then

$$
\{(c, d) \in C \times D: \phi(c) \geq d\}
$$

is a G-ideal on $C \times D$

- if J is a G-ideal on $C \times D$ then $\left(\Phi_{J}, \Psi_{J}\right)$ is a Galois connection between C and D where

$$
\Phi_{J}(c)=\sup \{d \in D:(c, d) \in J\}
$$

and

$$
\Psi_{J}(d)=\sup \{c \in C:(c, d) \in J\}
$$

- this relationship is reciprocal

This approach generalizes the heterogeneous one

This approach generalizes the heterogeneous one

- if $\otimes: C \times D \rightarrow P$ and $p \in P$ define

$$
\mathrm{Gl}_{\otimes, p}=\{(c, d) \in C \times D: c \otimes d \leq p\}
$$

This approach generalizes the heterogeneous one

- if $\otimes: C \times D \rightarrow P$ and $p \in P$ define

$$
\mathrm{GI}_{\otimes, p}=\{(c, d) \in C \times D: c \otimes d \leq p\}
$$

- $\mathrm{Gl}_{\otimes, p}$ is a G-ideal

This approach generalizes the heterogeneous one

- if $\otimes: C \times D \rightarrow P$ and $p \in P$ define

$$
\mathrm{Gl}_{\otimes, p}=\{(c, d) \in C \times D: c \otimes d \leq p\}
$$

- $\mathrm{Gl}_{\otimes, p}$ is a G-ideal
- in our case, for $a \in A, b \in B$, it is enough to take

$$
J_{a, b}=\mathrm{GI}_{\otimes_{\mathrm{a}, \mathrm{~b}}, R(a, b)}
$$

This approach generalizes the heterogeneous one

- if $\otimes: C \times D \rightarrow P$ and $p \in P$ define

$$
\mathrm{Gl}_{\otimes, p}=\{(c, d) \in C \times D: c \otimes d \leq p\}
$$

- $\mathrm{Gl}_{\otimes, p}$ is a G-ideal
- in our case, for $a \in A, b \in B$, it is enough to take

$$
J_{a, b}=\mathrm{Gl}_{\otimes_{a, b}, R(a, b)}
$$

and then

- $\phi_{a, b}=\Phi_{J_{a, b}}$
- $\psi_{a, b}=\Psi_{J_{a, b}}$

5
 Future work

Future work with heterogeneous approach

Future work with heterogeneous approach

- theoretical

Future work with heterogeneous approach

- theoretical
- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek \& Vychodil)

Future work with heterogeneous approach

- theoretical
- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek \& Vychodil)
- to generalize some existing results to this approach

Future work with heterogeneous approach

- theoretical
- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek \& Vychodil)
- to generalize some existing results to this approach
- practical

Future work with heterogeneous approach

- theoretical
- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek \& Vychodil)
- to generalize some existing results to this approach
- practical
- to find an example where this approach has added value

Future work with heterogeneous approach

- theoretical
- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek \& Vychodil)
- to generalize some existing results to this approach
- practical
- to find an example where this approach has added value
- to look for interpretation of result fuzzy concepts (not only in this approach!)

Future work with heterogeneous approach

- theoretical
- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek \& Vychodil)
- to generalize some existing results to this approach
- practical
- to find an example where this approach has added value
- to look for interpretation of result fuzzy concepts (not only in this approach!)
- to present the result concepts in a form acceptable for a client:

Future work with heterogeneous approach

- theoretical
- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek \& Vychodil)
- to generalize some existing results to this approach
- practical
- to find an example where this approach has added value
- to look for interpretation of result fuzzy concepts (not only in this approach!)
- to present the result concepts in a form acceptable for a client:
- to reduce their number

Future work with heterogeneous approach

- theoretical
- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek \& Vychodil)
- to generalize some existing results to this approach
- practical
- to find an example where this approach has added value
- to look for interpretation of result fuzzy concepts (not only in this approach!)
- to present the result concepts in a form acceptable for a client:
- to reduce their number
- to order them by some (well-defined) measure

Thank you for your attention
 stanislav.krajci@upjs.sk

