

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Some Generalizations of Formal Concept Analysis

Stanislav Krajči

Šafárik University Košice, Slovakia

回 と く ヨ と く ヨ と

0 Why to fuzzify?

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Classical formal concept analysis

- Ganter & Wille
- an object-attribute model
 - columns <u>a</u>ttributes the set A
 - rows objects the set B
 - values a <u>r</u>elation $R \subseteq A \times B$
- a Galois connection (\uparrow,\downarrow)
 - if $X \subseteq B$ then $\uparrow(X) = \{a \in A : (\forall b \in X) \langle a, b \rangle \in R\}$
 - if $Y \subseteq A$ then $\downarrow (Y) = \{b \in B : (\forall a \in Y) \langle a, b \rangle \in R\}$
- a concept such (X, Y) that $\uparrow(X) = Y$ and $\downarrow(Y) = X$
- $(X_1, Y_1) \leq (X_2, Y_2)$ iff $X_1 \subseteq X_2$ iff $Y_1 \supseteq Y_2$
- the set of concepts order by \leq is a complete lattice called the concept lattice

同 とくほ とくほと

	а	b	с	d	е
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0	0.9	0.3	0.3 0.6 0.3 0.2 0.2	0.4

	а	b	С	d	е
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0	0.9	0.3	0.3 0.6 0.3 0.2 0.2	0.4

R is not a relation anymore but fuzzy relation, i. e. *R* : *A* × *B* → [0, 1]

	а	b	с	d	е
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0 0.8 0.2 0.4 1.0	0.9	0.3	0.2	0.4

- *R* is not a relation anymore but fuzzy relation, i. e. *R* : *A* × *B* → [0, 1]
- R(a, b) the degree to which the object b carries the attribute a

回 と く ヨ と く ヨ と

	а	b	с	d	е
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0	0.9	0.3	0.3 0.6 0.3 0.2 0.2	0.4

- *R* is not a relation anymore but fuzzy relation, i. e. *R* : *A* × *B* → [0, 1]
- R(a, b) the degree to which the object b carries the attribute a
- how to modify this approach so we could use the concept lattice construction?

同 ト イヨ ト イヨト

	а	b	с	d	е
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0 0.8 0.2 0.4 1.0	0.9	0.3	0.2	0.4

- *R* is not a relation anymore but fuzzy relation, i. e. *R* : *A* × *B* → [0, 1]
- R(a, b) the degree to which the object b carries the attribute a
- how to modify this approach so we could use the concept lattice construction?
- e. g. how to (re)define mappings \uparrow and \downarrow ?

Stano Krajči Olomouc – May 3, 2012

▲口→ ▲御→ ▲注→ ▲注→ 三注

• Ganter & Wille - scaling

◆□ > ◆□ > ◆臣 > ◆臣 > ○

- Ganter & Wille - scaling
- Burusco & Fuentes-Gonzalez

- Ganter & Wille
 scaling
- Burusco & Fuentes-Gonzalez
 - but losing of Galois-connection-ess

イロト イヨト イヨト イヨト

- Ganter & Wille
 scaling
- Burusco & Fuentes-Gonzalez
 but losing of Galois-connection-ess
- Bělohlávek and Pollandt (independently)
 - the first real fuzzification with nice properties

A ►

- Ganter & Wille
 scaling
- Burusco & Fuentes-Gonzalez
 but losing of Galois-connection-ess
- Bělohlávek and Pollandt (independently)
 the first real fuzzification with nice properties
- Ďuráková, SK, Snášel, Vojtáš
 - defuzzification by cuts

- Ganter & Wille
 scaling
- Burusco & Fuentes-Gonzalez
 but losing of Galois-connection-ess
- Bělohlávek and Pollandt (independently)
 the first real fuzzification with nice properties
- Ďuráková, SK, Snášel, Vojtáš – defuzzification by cuts

• . . .

同 とくほ とくほと

1 One-sided fuzzy approach

・ロ・ ・ 日・ ・ 日・ ・ 日・

•
$$\uparrow$$
 : P(B) \rightarrow ^A[0,1]:

$$(\uparrow(X))(a) = \inf\{R(a,b) : b \in X\}$$

・ロト ・回ト ・ヨト ・ヨト

•
$$\uparrow$$
 : P(B) \rightarrow ^A[0,1]:

$$(\uparrow(X))(a) = \inf\{R(a, b) : b \in X\}$$

i. e. $\uparrow(X)$ is a fuzzy set of attributes, the value in a column $a \in A$ of which is the minimum from values of this column in rows from X

Image: A □ > A

•
$$\uparrow$$
 : P(B) \rightarrow ^A[0,1]:

$$(\uparrow(X))(a) = \inf\{R(a, b) : b \in X\}$$

i. e. $\uparrow(X)$ is a fuzzy set of attributes, the value in a column $a \in A$ of which is the minimum from values of this column in rows from X

•
$$\downarrow$$
 : ${}^{A}[0,1] \rightarrow \mathsf{P}(B)$:

$$\downarrow(f) = \{b \in B : (\forall a \in A) R(a, b) \ge f(a)\}$$

・ロト ・回ト ・ヨト

•
$$\uparrow$$
 : P(B) \rightarrow ^A[0,1]:

$$(\uparrow(X))(a) = \inf\{R(a, b) : b \in X\}$$

i. e. $\uparrow(X)$ is a fuzzy set of attributes, the value in a column $a \in A$ of which is the minimum from values of this column in rows from X

•
$$\downarrow$$
 : ${}^{A}[0,1] \rightarrow \mathsf{P}(B)$:

$$\downarrow(f) = \{b \in B : (\forall a \in A) R(a, b) \ge f(a)\}$$

i. e. $\downarrow(f)$ is the set of objects rows of which dominate over f

•
$$\uparrow$$
 : P(B) \rightarrow ^A[0,1]:

$$(\uparrow(X))(a) = \inf\{R(a, b) : b \in X\}$$

i. e. $\uparrow(X)$ is a fuzzy set of attributes, the value in a column $a \in A$ of which is the minimum from values of this column in rows from X

•
$$\downarrow$$
 : ${}^{A}[0,1] \rightarrow \mathsf{P}(B)$:

$$\downarrow(f) = \{b \in B : (\forall a \in A) R(a, b) \ge f(a)\}$$

i. e. $\downarrow(f)$ is the set of objects rows of which dominate over f

• these definitions are non-symmetric!

•

	а	b	с	d	е
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0 0.8 0.2 0.4 1.0	0.9	0.3	0.2	0.4

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

۲

	а	b	с	d	е
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0 0.8 0.2 0.4 1.0	0.9	0.3	0.2	0.4

• $\{\gamma, \delta\}^{\uparrow} = \{\langle \mathsf{a}, 0.2 \rangle, \langle \mathsf{b}, 0.3 \rangle, \langle \mathsf{c}, 0.1 \rangle, \langle \mathsf{d}, 0.2 \rangle, \langle \mathsf{e}, 0.3 \rangle\}$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

۲

	а	b	с	d	е
α	1.0	0.8	0.2	0.3	0.5
β	0.8	1.0	0.2	0.6	0.9
γ	0.2	0.3	0.2	0.3	0.4
δ	0.4	0.7	0.1	0.2	0.3
ε	1.0	0.9	0.2 0.2 0.2 0.1 0.3	0.2	0.4

• $\{\gamma, \delta\}^{\uparrow} = \{\langle \mathsf{a}, 0.2 \rangle, \langle \mathsf{b}, 0.3 \rangle, \langle \mathsf{c}, 0.1 \rangle, \langle \mathsf{d}, 0.2 \rangle, \langle \mathsf{e}, 0.3 \rangle\}$

• $\{\langle \mathsf{a}, \mathsf{0.3} \rangle, \langle \mathsf{b}, \mathsf{0.3} \rangle, \langle \mathsf{c}, \mathsf{0.2} \rangle, \langle \mathsf{d}, \mathsf{0.3} \rangle, \langle \mathsf{e}, \mathsf{0.5} \rangle\}^{\downarrow} = \{\alpha, \beta\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $\langle \uparrow, \downarrow, \subseteq, \leq \rangle$ is a Galois connection:

◆□ > ◆□ > ◆臣 > ◆臣 > ○

- $\langle\uparrow,\downarrow,\subseteq,\leq\rangle$ is a Galois connection:
 - if $X_1 \subseteq X_2$ then $\uparrow(X_1) \ge \uparrow(X_2)$

▲圖▶ ▲屋▶ ▲屋≯

- $\langle\uparrow,\downarrow,\subseteq,\leq\rangle$ is a Galois connection:
 - if $X_1 \subseteq X_2$ then $\uparrow(X_1) \ge \uparrow(X_2)$
 - if $f_1 \leq f_2$ then $\downarrow(f_1) \supseteq \downarrow(f_2)$

→ 御 → → 注 → → 注 →

- $\langle\uparrow,\downarrow,\subseteq,\leq\rangle$ is a Galois connection:
 - if $X_1 \subseteq X_2$ then $\uparrow(X_1) \ge \uparrow(X_2)$
 - if $f_1 \leq f_2$ then $\downarrow(f_1) \supseteq \downarrow(f_2)$
 - $X \subseteq \downarrow(\uparrow(X))$

→ 御 → → 注 → → 注 →

- $\langle \uparrow, \downarrow, \subseteq, \leq \rangle$ is a Galois connection:
 - if $X_1 \subseteq X_2$ then $\uparrow(X_1) \ge \uparrow(X_2)$
 - if $f_1 \leq f_2$ then $\downarrow(f_1) \supseteq \downarrow(f_2)$
 - $X \subseteq \downarrow(\uparrow(X))$
 - $f \leq \uparrow(\downarrow(f))$

(4回) (1日) (日)

- $\langle \uparrow, \downarrow, \subseteq, \leq \rangle$ is a Galois connection:
 - if $X_1 \subseteq X_2$ then $\uparrow(X_1) \ge \uparrow(X_2)$
 - if $f_1 \leq f_2$ then $\downarrow(f_1) \supseteq \downarrow(f_2)$
 - $X \subseteq \downarrow(\uparrow(X))$
 - $f \leq \uparrow(\downarrow(f))$
- or equivalently

 $f \leq \uparrow(X)$ iff $X \subseteq \downarrow(f)$

回 と く ヨ と く ヨ と

Stano Krajči Olomouc – May 3, 2012

• define a mapping $cl : P(B) \rightarrow P(B)$

 $\mathsf{cl}(X) = \mathop{\downarrow}(\mathop{\uparrow}(X))$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

• define a mapping $cl : P(B) \rightarrow P(B)$

 $\mathsf{cl}(X) = \mathop{\downarrow}(\mathop{\uparrow}(X))$

• cl is a closure operator:

(4回) (1日) (日)

• define a mapping $cl : P(B) \rightarrow P(B)$

 $\mathsf{cl}(X) = \mathop{\downarrow}(\mathop{\uparrow}(X))$

• cl is a closure operator:

•
$$X \subseteq cl(X)$$

(4回) (1日) (日)

• define a mapping $cl : P(B) \rightarrow P(B)$

$$\mathsf{cl}(X) = \downarrow(\uparrow(X))$$

• cl is a closure operator:

•
$$X \subseteq cl(X)$$

• if $X_1 \subseteq X_2$ then $\operatorname{cl}(X_1) \subseteq \operatorname{cl}(X_2)$

同 とくほ とくほと

• define a mapping $cl : P(B) \rightarrow P(B)$

$$\mathsf{cl}(X) = \downarrow(\uparrow(X))$$

• cl is a closure operator:

•
$$X \subseteq cl(X)$$

• if $X_1 \subseteq X_2$ then $\operatorname{cl}(X_1) \subseteq \operatorname{cl}(X_2)$

•
$$\operatorname{cl}(X) = \operatorname{cl}(\operatorname{cl}(X))$$

回 と く ヨ と く ヨ と

Stano Krajči Olomouc – May 3, 2012

→ 御 → → 注 → → 注 →

□ ▶ 《 臣 ▶ 《 臣 ▶

- if X = cl(X) then the pair ⟨X,↑(X)⟩ is called an one-sided fuzzy concept
- one-sided fuzzy because:

回 と く ヨ と く ヨ と

 if X = cl(X) then the pair ⟨X,↑(X)⟩ is called an one-sided fuzzy concept

- one-sided fuzzy because:
 - (the extent) X is a crisp set of objects

同 ト く ヨ ト く ヨ ト

 if X = cl(X) then the pair ⟨X,↑(X)⟩ is called an one-sided fuzzy concept

- one-sided fuzzy because:
 - (the extent) X is a crisp set of objects
 - (the intent) $\uparrow(X)$ is a fuzzy set of attributes

同 ト く ヨ ト く ヨ ト

 if X = cl(X) then the pair ⟨X,↑(X)⟩ is called an one-sided fuzzy concept

- one-sided fuzzy because:
 - (the extent) X is a crisp set of objects
 - (the intent) $\uparrow(X)$ is a fuzzy set of attributes
- both coordinates of a concept are reciprocal derivable; it is enough to consider the first one

- one-sided fuzzy because:
 - (the extent) X is a crisp set of objects
 - (the intent) $\uparrow(X)$ is a fuzzy set of attributes
- both coordinates of a concept are reciprocal derivable; it is enough to consider the first one
- ⟨{X ∈ P(B) : X = cl(X)}, ⊆⟩ is a (complete) lattice operation of which are:

- one-sided fuzzy because:
 - (the extent) X is a crisp set of objects
 - (the intent) $\uparrow(X)$ is a fuzzy set of attributes
- both coordinates of a concept are reciprocal derivable; it is enough to consider the first one
- ⟨{X ∈ P(B) : X = cl(X)}, ⊆⟩ is a (complete) lattice operation of which are:

•
$$X_1 \wedge X_2 = X_1 \cap X_2$$

- one-sided fuzzy because:
 - (the extent) X is a crisp set of objects
 - (the intent) $\uparrow(X)$ is a fuzzy set of attributes
- both coordinates of a concept are reciprocal derivable; it is enough to consider the first one
- ⟨{X ∈ P(B) : X = cl(X)}, ⊆⟩ is a (complete) lattice operation of which are:

•
$$X_1 \wedge X_2 = X_1 \cap X_2$$

•
$$X_1 \vee X_2 = \operatorname{cl}(X_1 \cup X_2)$$

- one-sided fuzzy because:
 - (the extent) X is a crisp set of objects
 - (the intent) $\uparrow(X)$ is a fuzzy set of attributes
- both coordinates of a concept are reciprocal derivable; it is enough to consider the first one
- ⟨{X ∈ P(B) : X = cl(X)}, ⊆⟩ is a (complete) lattice operation of which are:
 - $X_1 \wedge X_2 = X_1 \cap X_2$
 - $X_1 \vee X_2 = \operatorname{cl}(X_1 \cup X_2)$
- this lattice is called the one-sided fuzzy concept lattice

白 ト く ヨ ト く ヨ ト

Equivalent and independent one-sided approaches

回 と く ヨ と く ヨ と

Equivalent and independent one-sided approaches

• Ben-Yahia & Jaoua

回 と く ヨ と く ヨ と

Equivalent and independent one-sided approaches

- Ben-Yahia & Jaoua
 - roles of attributes and object were interchanged

個 と く ヨ と く ヨ と

- Ben-Yahia & Jaoua
 - roles of attributes and object were interchanged
 - they used their approach for looking for attribute dependencies

- Ben-Yahia & Jaoua
 - roles of attributes and object were interchanged
 - they used their approach for looking for attribute dependencies
- Bělohlávek, Sklenář, & Zacpal
 - crisply generated concepts

2 Generalized fuzzy approach

・ロン ・四と ・日と ・日と

Motivation

Stano Krajči Olomouc – May 3, 2012

• three different (types of) approaches:

・ロト ・回ト ・ヨト ・ヨト

- three different (types of) approaches:
 - classical/binary/crisp approach

(4日) (日)

æ

- ∢ ≣ ▶

- three different (types of) approaches:
 - classical/binary/crisp approach
 - *L*-fuzzification

- 4 回 2 - 4 □ 2 - 4 □

- three different (types of) approaches:
 - classical/binary/crisp approach
 - *L*-fuzzification
 - one-sided fuzzification

- 4 回 2 - 4 □ 2 - 4 □

- three different (types of) approaches:
 - classical/binary/crisp approach
 - *L*-fuzzification
 - one-sided fuzzification
- the second two are incompatible but they have some very similar features

- three different (types of) approaches:
 - classical/binary/crisp approach
 - *L*-fuzzification
 - one-sided fuzzification
- the second two are incompatible but they have some very similar features
- a natural question arise how to unify these approaches?

- three different (types of) approaches:
 - classical/binary/crisp approach
 - *L*-fuzzification
 - one-sided fuzzification
- the second two are incompatible but they have some very similar features
- a natural question arise how to unify these approaches?
- hence we try to find a common platform for them all

object subsets	attribute subsets
crisp	crisp
<i>L</i> -fuzzy	<i>L</i> -fuzzy
crisp	[0, 1]-fuzzy
	crisp L-fuzzy

٠

approach	object subsets	attribute subsets
classical	crisp	crisp
<i>L</i> -fuzzy	<i>L</i> -fuzzy	<i>L</i> -fuzzy
one-sided fuzzy	crisp	[0, 1]-fuzzy
generalized	<i>D</i> -fuzzy	C-fuzzy

||◆ 聞 > ||◆ 臣 > ||◆ 臣 >

Stano Krajči Olomouc – May 3, 2012

• *A*, *B* – non-empty sets

- A, B non-empty sets
- C, D complete lattices

→ 御 → → 注 → → 注 →

- *A*, *B* non-empty sets
- C, D complete lattices
- *P* partially ordered set

周▶ ▲ 臣▶

- ∢ ≣ ▶

- A, B non-empty sets
- C, D complete lattices
- P partially ordered set
- $R: A \times B \rightarrow P$

周▶ ▲ 臣▶

- ∢ ≣ ▶

- A, B non-empty sets
- C, D complete lattices
- P partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes : C \times D \to P$

/⊒ > < ≣ >

- < ∃ >

- A, B non-empty sets
- C, D complete lattices
- P partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes : C \times D \to P$
- \otimes isotone and left-continuous in both arguments:

- A, B non-empty sets
- C, D complete lattices
- P partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes : C \times D \to P$
- ⊗ isotone and left-continuous in both arguments:
 1a) if c₁, c₂ ∈ C, d ∈ D, and c₁ < c₂

同 と く ヨ と く ヨ と

- A, B non-empty sets
- C, D complete lattices
- P partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes : C \times D \to P$
- \otimes isotone and left-continuous in both arguments:

1a) if $c_1, c_2 \in C$, $d \in D$, and $c_1 \leq c_2$ then $c_1 \otimes d \leq c_2 \otimes d$

- A, B non-empty sets
- C, D complete lattices
- P partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes : C \times D \to P$
- \otimes isotone and left-continuous in both arguments:

1a) if $c_1, c_2 \in C$, $d \in D$, and $c_1 \leq c_2$ then $c_1 \otimes d \leq c_2 \otimes d$ 1b) if $d_1, d_2 \in D$, $d \in D$, and $d_1 \leq d_2$ then $c \otimes d_1 \leq c \otimes d_2$

伺 ト イヨト イヨト

- A, B non-empty sets
- C, D complete lattices
- P partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \to P$
- \otimes isotone and left-continuous in both arguments:

1a) if $c_1, c_2 \in C$, $d \in D$, and $c_1 \leq c_2$ then $c_1 \otimes d \leq c_2 \otimes d$ 1b) if $d_1, d_2 \in D$, $d \in D$, and $d_1 \leq d_2$ then $c \otimes d_1 \leq c \otimes d_2$ 2a) if $d \in D$, $p \in P$, $X \subseteq C$ and $(\forall c \in X)c \otimes d \leq p$

伺 ト イヨト イヨト

- A, B non-empty sets
- C, D complete lattices
- P partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \to P$
- \otimes isotone and left-continuous in both arguments:

1a) if $c_1, c_2 \in C$, $d \in D$, and $c_1 \leq c_2$ then $c_1 \otimes d \leq c_2 \otimes d$ 1b) if $d_1, d_2 \in D$, $d \in D$, and $d_1 \leq d_2$ then $c \otimes d_1 \leq c \otimes d_2$ 2a) if $d \in D$, $p \in P$, $X \subseteq C$ and $(\forall c \in X)c \otimes d \leq p$ then sup $X \otimes d \leq p$

||◆ 同 ▶ || ● ▶ || ◆ 同 ▶ ||

- A, B non-empty sets
- C, D complete lattices
- P partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \to P$
- \otimes isotone and left-continuous in both arguments:
 - 1a) if $c_1, c_2 \in C$, $d \in D$, and $c_1 \leq c_2$ then $c_1 \otimes d \leq c_2 \otimes d$
 - 1b) if $d_1, d_2 \in D$, $d \in D$, and $d_1 \leq d_2$ then $c \otimes d_1 \leq c \otimes d_2$
 - 2a) if $d \in D$, $p \in P$, $X \subseteq C$ and $(\forall c \in X)c \otimes d \leq p$ then sup $X \otimes d \leq p$
 - 2b) if $c \in C$, $p \in P$, $Y \subseteq D$ and $(\forall d \in Y)c \otimes d \leq p$ then $c \otimes \sup Y \leq p$

- A, B non-empty sets
- C, D complete lattices
- P partially ordered set
- $R: A \times B \rightarrow P$
- $\otimes: C \times D \to P$
- \otimes isotone and left-continuous in both arguments:
 - 1a) if $c_1, c_2 \in C$, $d \in D$, and $c_1 \leq c_2$ then $c_1 \otimes d \leq c_2 \otimes d$
 - 1b) if $d_1, d_2 \in D$, $d \in D$, and $d_1 \leq d_2$ then $c \otimes d_1 \leq c \otimes d_2$
 - 2a) if $d \in D$, $p \in P$, $X \subseteq C$ and $(\forall c \in X)c \otimes d \leq p$ then sup $X \otimes d \leq p$
 - 2b) if $c \in C$, $p \in P$, $Y \subseteq D$ and $(\forall d \in Y)c \otimes d \leq p$ then $c \otimes \sup Y \leq p$
- note that \otimes need not be commutative!

▲□→ ▲ □→ ▲ □→

Stano Krajči Olomouc – May 3, 2012

・ロン ・雪 と ・ ヨ と ・ ヨ と

•
$$\uparrow$$
 : $^{B}D \rightarrow ^{A}C$:

$\uparrow(g)(a) = \sup\{c \in C : (\forall b \in B)c \otimes g(b) \leq R(a,b)\}$

・ロト ・回ト ・ヨト ・ヨト

•
$$\uparrow : {}^{B}D \to {}^{A}C$$
:
 $\uparrow (g)(a) = \sup\{c \in C : (\forall b \in B)c \otimes g(b) \leq R(a, b)\}$

•
$$\downarrow : {}^{A}C \rightarrow {}^{B}D:$$

$$\downarrow(f)(b) = \sup\{d \in D : (\forall a \in A)f(a) \otimes d \leq R(a,b)\}$$

▲□→ ▲圖→ ▲厘→ ▲厘→

•
$$\uparrow: {}^{B}D \to {}^{A}C$$
:
 $\uparrow(g)(a) = \sup\{c \in C : (\forall b \in B)c \otimes g(b) \leq R(a, b)\}$
• $\downarrow: {}^{A}C \to {}^{B}D$:
 $\downarrow(f)(b) = \sup\{d \in D : (\forall a \in A)f(a) \otimes d \leq R(a, b)\}$

• \uparrow and \downarrow form a Galois connection:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

•
$$\uparrow: {}^{B}D \to {}^{A}C$$
:
 $\uparrow(g)(a) = \sup\{c \in C : (\forall b \in B)c \otimes g(b) \leq R(a, b)\}$

• $\downarrow : {}^{A}C \rightarrow {}^{B}D:$

$$\downarrow(f)(b) = \sup\{d \in D : (\forall a \in A)f(a) \otimes d \le R(a,b)\}$$

• \uparrow and \downarrow form a Galois connection:

- if $f_1, f_2 \in {}^BD$ and $f_1 \leq f_2$ then $\downarrow(f_1) \geq \downarrow(f_2)$
- if $g_1, g_2 \in {}^{A}C$ and $g_1 \leq g_2$ then $\uparrow(g_1) \geq \uparrow(g_2)$

• if
$$f \in {}^{B}D$$
 then $f \leq \uparrow(\downarrow(f))$

• if $g \in {}^{A}C$ then $g \leq \downarrow(\uparrow(g))$

▲御▶ ▲唐▶ ▲唐▶

The basic theorem (a part)

・ロト ・回ト ・ヨト ・ヨト

let P have the least element 0_P s. t.
 0_C ⊗ d = c ⊗ 0_D = 0_P

→ 御 → → 注 → → 注 →

- let P have the least element 0_P s. t. $0_C \otimes d = c \otimes 0_D = 0_P$
- then the complete lattice L is isomorphic to GCL(...) iff

★御★ ★注★ ★注★

- let P have the least element 0_P s. t. $0_C \otimes d = c \otimes 0_D = 0_P$
- then the complete lattice L is isomorphic to GCL(...) iff there are α : A × C → L, β : B × D → L s. t.:

伺 ト イヨト イヨト

- let P have the least element 0_P s. t. $0_C \otimes d = c \otimes 0_D = 0_P$
- then the complete lattice L is isomorphic to GCL(...) iff there are α : A × C → L, β : B × D → L s. t.:

1a) α is non-increasing in the second argument

- let P have the least element 0_P s. t. $0_C \otimes d = c \otimes 0_D = 0_P$
- then the complete lattice L is isomorphic to GCL(...) iff there are α : A × C → L, β : B × D → L s. t.:

1a) α is non-increasing in the second argument 1b) β is non-decreasing in the second argument

- let P have the least element 0_P s. t. $0_C \otimes d = c \otimes 0_D = 0_P$
- then the complete lattice L is isomorphic to GCL(...) iff there are α : A × C → L, β : B × D → L s. t.:

1a) α is non-increasing in the second argument 1b) β is non-decreasing in the second argument 2a) $\alpha[A \times C]$ is infimum-dense

同 と く ヨ と く ヨ と

- let P have the least element 0_P s. t. $0_C \otimes d = c \otimes 0_D = 0_P$
- then the complete lattice L is isomorphic to GCL(...) iff there are α : A × C → L, β : B × D → L s. t.:

1a) α is non-increasing in the second argument 1b) β is non-decreasing in the second argument 2a) $\alpha[A \times C]$ is infimum-dense 2b) $\beta[B \times D]$ is supremum-dense

- let P have the least element 0_P s. t. $0_C \otimes d = c \otimes 0_D = 0_P$
- then the complete lattice L is isomorphic to GCL(...) iff there are α : A × C → L, β : B × D → L s. t.:

1a) α is non-increasing in the second argument
1b) β is non-decreasing in the second argument
2a) α[A × C] is infimum-dense
2b) β[B × D] is supremum-dense
3) α(a, c) ≥ β(b, d) iff c ⊗ d ≤ R(a, b)

• this approach is really generalization of the previous ones

< □ > < □ > < □ >

- this approach is really generalization of the previous ones
- of course, in the classical and one-sided cases we have to use the canonical equivalency of subsets and their characteristic functions

3 Hedge approach R. Bělohlávek, V. Vychodil (et al.)

→ 御 → → 注 → → 注 →

Hedge

・ロ・・(四・・)を注・・(注・・)注

Hedge

- a (complete) residuated lattice $\langle L, \lor, \land, \otimes, \rightarrow, 0, 1 \rangle$:
 - $x \otimes y \leq z$ iff $x \leq y \rightarrow z$
 - \otimes isotone in both their arguments
 - $\bullet \ \rightarrow$ antitone in the first argument, isotone in the second one
 - ⊗ commutative
 - $x \otimes 1 = 1 \otimes x = x$

イロン イヨン イヨン イヨン

Hedge

- a (complete) residuated lattice $\langle L, \lor, \land, \otimes, \rightarrow, 0, 1 \rangle$:
 - $x \otimes y \leq z$ iff $x \leq y \rightarrow z$
 - \otimes isotone in both their arguments
 - $\bullet \ \rightarrow$ antitone in the first argument, isotone in the second one
 - ⊗ commutative
 - $x \otimes 1 = 1 \otimes x = x$
- a hedge [Hájek] a function * on L s. t.:

•
$$1_L^* = 1_L$$

• $a^* \le a$
• $(a \rightarrow b)^* \le a^* \rightarrow b^*$
• $a^{**} = a^*$ (or equivalently $* \circ * = *$)

<ロ> (四) (四) (三) (三) (三) (三)

• A, B – sets, $R : A \times B \rightarrow L$ – an incidence relation

(4回) (1日) (日)

A concept lattice with hedges (1/3)

- A, B sets, $R : A \times B \rightarrow L$ an incidence relation
- $*_A$, $*_B$ hedges on L

A concept lattice with hedges (1/3)

- A, B sets, $R : A \times B \rightarrow L$ an incidence relation
- $*_A$, $*_B$ hedges on L
- operations:

•
$$\uparrow$$
 : ${}^{B}L \rightarrow {}^{A}L$:

$$\uparrow(g)(a) = \sup\{c \in L : (\forall b \in B)c \otimes (g(b))^{*_B} \leq R(a, b)\}$$

•
$$\downarrow : {}^{A}L \rightarrow {}^{B}L:$$

$$\downarrow(f)(b) = \sup\{d \in L : (\forall a \in A)(f(a))^{*_A} \otimes d \le R(a, b)\}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

A concept lattice with hedges (2/3)

• for arbitrary $h: U \rightarrow L$ define

$$\lfloor h \rfloor = \{ \langle u, a \rangle \in U \times L : a \le h(u) \}$$

• for arbitrary
$$H \subseteq U \times L$$
 define

$$\lceil H \rceil(u) = \bigvee \{ a \in L : \langle u, a \rangle \in H \}$$

• for arbitrary $h: U \rightarrow L$ and $*: L \rightarrow L$ define

$$h^*(u) = (h(u))^*$$

• for arbitrary $H \subseteq U \times L$ and $* : L \rightarrow L$ define

$$H^* = \{ \langle x, a^* \rangle : \langle x, a \rangle \in H \}$$

回 と く ヨ と く ヨ と

- $Y^{\vee} = \lfloor \lceil Y \rceil^{\uparrow} \rfloor^{*_A}$
- $X^{\scriptscriptstyle \wedge} = \lfloor \lceil X \rceil^{\downarrow} \rfloor^{*_B}$
- $\langle \langle a, c \rangle, \langle b, d \rangle \rangle \in R_{\langle \land, \lor \rangle}$ iff $c \otimes d \leq R(a, b)$

イロン イ部ン イヨン イヨン 三日

- $Y^{\vee} = \lfloor \lceil Y \rceil^{\uparrow} \rfloor^{*_A}$
- $X^{\scriptscriptstyle \wedge} = \lfloor [X]^{\downarrow} \rfloor^{*_B}$
- $\langle \langle a, c \rangle, \langle b, d \rangle \rangle \in R_{\langle \lambda, \vee \rangle}$ iff $c \otimes d \leq R(a, b)$
- $R_{\langle \wedge, \vee \rangle}$ is a classical set

· < @ > < 문 > < 문 > _ 문

- $Y^{\vee} = \lfloor \lceil Y \rceil^{\uparrow} \rfloor^{*_A}$
- $X^{\scriptscriptstyle \wedge} = \lfloor \lceil X \rceil^{\downarrow} \rfloor^{*_B}$
- $\langle \langle a, c \rangle, \langle b, d \rangle \rangle \in R_{\langle \lambda, \vee \rangle}$ iff $c \otimes d \leq R(a, b)$
- $R_{\langle \wedge, \vee \rangle}$ is a classical set
- CLH(...) is isomorphic to the ordinary concept lattice CL(A × *_A[L], B × *_B[L], Å, Y, R_{⟨Å,Y⟩})

Relationship between these generalizations

the lattices

$$GCL(A, B, *_A[L], *_B[L], L, R, \otimes)$$

and

$$\mathsf{CL}(A \times *_{A}[L], B \times *_{B}[L], \bot, \Upsilon, R_{\langle \bot, \Upsilon \rangle})$$

are (canonically) isomorphic

Relationship between these generalizations

the lattices

$$GCL(A, B, *_A[L], *_B[L], L, R, \otimes)$$

and

$$\mathsf{CL}(A \times *_{\mathcal{A}}[L], B \times *_{\mathcal{B}}[L], \land, \curlyvee, R_{\langle \land, \curlyvee \rangle})$$

are (canonically) isomorphic and the isomorphisms are:

• if
$$g: B \to *_B[L]$$
, $f: A \to *_A[L]$ then

 $\phi(\langle g, f \rangle) = \langle \lfloor g \rfloor, \lfloor f \rfloor \rangle$

• if $S \subseteq B \times *_B[L]$, $T \subseteq A \times *_A[L]$ then

$$\psi(\langle S, T \rangle) = \langle \lceil S \rceil, \lceil T \rceil \rangle$$

白 ト く ヨ ト く ヨ ト

Relationship between these generalizations

the lattices

$$GCL(A, B, *_A[L], *_B[L], L, R, \otimes)$$

and

$$\mathsf{CL}(A \times *_{\mathcal{A}}[L], B \times *_{\mathcal{B}}[L], \land, \curlyvee, R_{\langle \land, \curlyvee \rangle})$$

are (canonically) isomorphic and the isomorphisms are:

• if
$$g: B \to *_B[L]$$
, $f: A \to *_A[L]$ then

 $\phi(\langle g, f \rangle) = \langle \lfloor g \rfloor, \lfloor f \rfloor \rangle$

• if $S \subseteq B \times *_B[L]$, $T \subseteq A \times *_A[L]$ then

 $\psi(\langle S, T \rangle) = \langle \lceil S \rceil, \lceil T \rceil \rangle$

• GCL(...) and CLH(...) are (canonically) isomorphic

向下 イヨト イヨト

Heterogeneous approach

3

joined work with my colleague Ondrej Krídlo and my students L'. Antoni, B. Macek, and L. Pisková

⊡ ▶ < ≣ ▶

_∢ ≣ ≯

Motivation

Stano Krajči Olomouc – May 3, 2012

• J. Medina and M. Ojeda-Aciego use the multi-adjoint approach in logic-programming

→ 御 → → 注 → → 注 →

- J. Medina and M. Ojeda-Aciego use the multi-adjoint approach in logic-programming
- they bring this original idea into formal concept analysis and take one \otimes for each object

- J. Medina and M. Ojeda-Aciego use the multi-adjoint approach in logic-programming
- they bring this original idea into formal concept analysis and take one \otimes for each object
- this idea is not (straightforwardly) covered by the previous approach, so we try to implant this to it

回 と く ヨ と く ヨ と

- J. Medina and M. Ojeda-Aciego use the multi-adjoint approach in logic-programming
- they bring this original idea into formal concept analysis and take one \otimes for each object
- this idea is not (straightforwardly) covered by the previous approach, so we try to implant this to it
- moreover we diversify all what can be diversified

回 と く ヨ と く ヨ と

• A and B are non-empty sets

→ 御 → → 注 → → 注 →

- A and B are non-empty sets
- for each a ∈ A,
 C_a is a complete lattice

- 4 回 2 - 4 □ 2 - 4 □

- A and B are non-empty sets
- for each a ∈ A,
 C_a is a complete lattice
- for each b ∈ B,
 D_b is a complete lattice
- for each a ∈ A and b ∈ B,
 P_{a,b} is a partially ordered set

.

- A and B are non-empty sets
- for each a ∈ A,
 C_a is a complete lattice
- for each b ∈ B,
 D_b is a complete lattice
- for each a ∈ A and b ∈ B,
 P_{a,b} is a partially ordered set
- for each b ∈ B,
 ⊗_{a,b} : C_a × D_b → P_{a,b}
 which is isotone and left-continuous in both arguments

向下 イヨト イヨト

- A and B are non-empty sets
- for each a ∈ A,
 C_a is a complete lattice
- for each b ∈ B,
 D_b is a complete lattice
- for each a ∈ A and b ∈ B,
 P_{a,b} is a partially ordered set
- for each b ∈ B,
 ⊗_{a,b} : C_a × D_b → P_{a,b}
 which is isotone and left-continuous in both arguments
- R is a function from $A \times B$ s. t. for each $a \in A$ and $b \in B$, $R(a, b) \in P_{a,b}$

• • = • • = •

Two mappings

Stano Krajči Olomouc – May 3, 2012

・ロン ・雪 と ・ ヨ と ・ ヨ と

・ロン ・雪 と ・ ヨ と ・ ヨ と

- F = Π_{a∈A}C_a
 (i. e. the set of all functions f with the domain A s. t.
 f(a) ∈ C_a, for all a ∈ A)
- $G = \prod_{b \in B} D_b$ (i. e. the set of all functions g with the domain B s. t. $g(b) \in D_b$, for all $b \in B$)

- 4 回 2 4 三 2 4 三 2 4

- F = Π_{a∈A}C_a
 (i. e. the set of all functions f with the domain A s. t.
 f(a) ∈ C_a, for all a ∈ A)
- $G = \prod_{b \in B} D_b$ (i. e. the set of all functions g with the domain B s. t. $g(b) \in D_b$, for all $b \in B$)
- \uparrow : $G \rightarrow F$:

$$(\uparrow(g))(a) = \sup\{c \in C_a : (\forall b \in B)c \otimes_{a,b} g(b) \le R(a,b)\}$$

・ロン ・回と ・ヨン・

- F = Π_{a∈A}C_a
 (i. e. the set of all functions f with the domain A s. t.
 f(a) ∈ C_a, for all a ∈ A)
- $G = \prod_{b \in B} D_b$ (i. e. the set of all functions g with the domain B s. t. $g(b) \in D_b$, for all $b \in B$)
- \uparrow : $G \rightarrow F$:

$$(\uparrow(g))(a) = \sup\{c \in C_a : (\forall b \in B)c \otimes_{a,b} g(b) \le R(a,b)\}$$

•
$$\downarrow : F \rightarrow G$$
:

$$(\downarrow(f))(b) = \sup\{d \in D_b : (\forall a \in A)f(a) \otimes_{a,b} d \le R(a,b)\}$$

<ロ> (日) (日) (日) (日) (日)

let *f* ∈ *F*, *g* ∈ *G*;
 then TFAE:

▲□→ ▲圖→ ▲厘→ ▲厘→

 let *f* ∈ *F*, *g* ∈ *G*; then TFAE:

1)
$$f \leq \uparrow(g)$$

▲□→ ▲圖→ ▲厘→ ▲厘→

- let *f* ∈ *F*, *g* ∈ *G*;
 then TFAE:
 - $\begin{array}{ll} 1) & f \leq \uparrow(g) \\ 2) & g \leq \downarrow(f) \end{array}$

・ロン ・回と ・ヨと ・

let *f* ∈ *F*, *g* ∈ *G*;
 then TFAE:

1)
$$f \leq \uparrow(g)$$

2) $g \leq \downarrow(f)$
3) $(\forall a \in A)(\forall b \in B) \quad f(a) \otimes_{a,b} g(b) \leq R(a,b)$

▲□→ ▲圖→ ▲厘→ ▲厘→

let *f* ∈ *F*, *g* ∈ *G*;
 then TFAE:

1)
$$f \leq \uparrow(g)$$

2) $g \leq \downarrow(f)$
3) $(\forall a \in A)(\forall b \in B)$ $f(a) \otimes_{a,b} g(b) \leq R(a, b)$

• \uparrow and \downarrow form a Galois connection

◆□ > ◆□ > ◆臣 > ◆臣 > ○

 let *f* ∈ *F*, *g* ∈ *G*; then TFAE:

1)
$$f \leq \uparrow(g)$$

2) $g \leq \downarrow(f)$
3) $(\forall a \in A)(\forall b \in B)$ $f(a) \otimes_{a,b} g(b) \leq R(a,b)$

 $\bullet~\uparrow$ and \downarrow form a Galois connection

• 1a)
$$g_1 \leq g_2$$
 implies $\uparrow(g_1) \geq \uparrow(g_2)$
1b) $f_1 \leq f_2$ implies $\downarrow(f_1) \geq \downarrow(2)$
2a) $g \leq \downarrow(\uparrow(g))$
2b) $f \leq \uparrow(\downarrow(f))$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

 let *f* ∈ *F*, *g* ∈ *G*; then TFAE:

1)
$$f \leq \uparrow(g)$$

2) $g \leq \downarrow(f)$
3) $(\forall a \in A)(\forall b \in B)$ $f(a) \otimes_{a,b} g(b) \leq R(a, b)$

 $\bullet~\uparrow$ and \downarrow form a Galois connection

• 1a)
$$g_1 \leq g_2$$
 implies $\uparrow(g_1) \geq \uparrow(g_2)$
1b) $f_1 \leq f_2$ implies $\downarrow(f_1) \geq \downarrow(2)$
2a) $g \leq \downarrow(\uparrow(g))$
2b) $f \leq \uparrow(\downarrow(f))$
3a) $\uparrow(g) = \uparrow(\downarrow(\uparrow(g)))$
3b) $\downarrow(f) = \downarrow(\uparrow(\downarrow(f)))$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Stano Krajči Olomouc – May 3, 2012

→ 御 → → 注 → → 注 →

• a concept – a pair $\langle g, f \rangle$ from $G \times F$ s.t. $\uparrow(g) = f$ and $\downarrow(f) = g$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Heterogeneous concept lattice

- a concept a pair $\langle g, f \rangle$ from $G \times F$ s.t. $\uparrow(g) = f$ and $\downarrow(f) = g$
- if $\langle g_1, f_1 \rangle$ and $\langle g_2, f_2 \rangle$ are concepts then $g_1 \leq g_2$ iff $f_1 \geq f_2$

→ 御 → → 注 → → 注 →

- a concept a pair $\langle g, f \rangle$ from $G \times F$ s.t. $\uparrow(g) = f$ and $\downarrow(f) = g$
- if $\langle g_1, f_1 \rangle$ and $\langle g_2, f_2 \rangle$ are concepts then $g_1 \leq g_2$ iff $f_1 \geq f_2$
- define $\langle g_1, f_1
 angle \leq \langle g_2, f_2
 angle$ iff $g_1 \leq g_2$ iff $f_1 \geq f_2$

同 と く ヨ と く ヨ と

- a concept a pair $\langle g, f \rangle$ from $G \times F$ s.t. $\uparrow(g) = f$ and $\downarrow(f) = g$
- if $\langle g_1, f_1 \rangle$ and $\langle g_2, f_2 \rangle$ are concepts then $g_1 \leq g_2$ iff $f_1 \geq f_2$
- define $\langle g_1, f_1
 angle \leq \langle g_2, f_2
 angle$ iff $g_1 \leq g_2$ iff $f_1 \geq f_2$
- a heterogeneous concept lattice HCL(A, B, P, R, C, D, ↓, ↑, ≤)
 the poset of all such concepts ordered by ≤

- 4 回 2 - 4 □ 2 - 4 □

The basic theorem on heterogeneous concept lattices (1/2)

Stano Krajči Olomouc – May 3, 2012

個 と く ヨ と く ヨ と

• HCL(...) is a complete lattice:

• HCL(...) is a complete lattice: a) $\bigwedge_{i \in I} \langle g_i, f_i \rangle = \left\langle \bigwedge_{i \in I} g_i, \uparrow \left(\downarrow \left(\bigvee_{i \in I} f_i \right) \right) \right\rangle$ • HCL(...) is a complete lattice: a) $\bigwedge_{i \in I} \langle g_i, f_i \rangle = \left\langle \bigwedge_{i \in I} g_i, \uparrow \left(\downarrow \left(\bigvee_{i \in I} f_i \right) \right) \right\rangle$ b) $\bigvee_{i \in I} \langle g_i, f_i \rangle = \left\langle \downarrow \left(\uparrow \left(\bigvee_{i \in I} g_i \right) \right), \bigwedge_{i \in I} f_i \right\rangle$

The basic theorem on heterogeneous concept lattices (2/2)

母 と く ヨ と く ヨ と

The basic theorem on heterogeneous concept lattices (2/2)

• for each $a \in A$, $b \in B$, let $P_{a,b}$ have the least element $0_{P_{a,b}}$ s. t. $0_{C_a} \bullet_{a,b} d = c \bullet_{a,b} 0_{D_b} = 0_{P_{a,b}}$, for all $c \in C_a$, $d \in D_b$.

The basic theorem on heterogeneous concept lattices (2/2)

- for each $a \in A$, $b \in B$, let $P_{a,b}$ have the least element $0_{P_{a,b}}$ s. t. $0_{C_a} \bullet_{a,b} d = c \bullet_{a,b} 0_{D_b} = 0_{P_{a,b}}$, for all $c \in C_a$, $d \in D_b$.
- a complete lattice L is isomorphic to HCL(...) iff

The basic theorem on heterogeneous concept lattices (2/2)

- for each $a \in A$, $b \in B$, let $P_{a,b}$ have the least element $0_{P_{a,b}}$ s. t. $0_{C_a} \bullet_{a,b} d = c \bullet_{a,b} 0_{D_b} = 0_{P_{a,b}}$, for all $c \in C_a$, $d \in D_b$.
- a complete lattice L is isomorphic to HCL(...) iff there are α : U_{a∈A}({a} × C_a) → L, β : U_{b∈B}({b} × D_b) → L s. t.:

- for each $a \in A$, $b \in B$, let $P_{a,b}$ have the least element $0_{P_{a,b}}$ s. t. $0_{C_a} \bullet_{a,b} d = c \bullet_{a,b} 0_{D_b} = 0_{P_{a,b}}$, for all $c \in C_a$, $d \in D_b$.
- a complete lattice L is isomorphic to HCL(...) iff there are α : U_{a∈A}({a} × C_a) → L, β : U_{b∈B}({b} × D_b) → L s. t.:

1a) α does not increase in the second argument

- for each $a \in A$, $b \in B$, let $P_{a,b}$ have the least element $0_{P_{a,b}}$ s. t. $0_{C_a} \bullet_{a,b} d = c \bullet_{a,b} 0_{D_b} = 0_{P_{a,b}}$, for all $c \in C_a$, $d \in D_b$.
- a complete lattice L is isomorphic to HCL(...) iff there are α : U_{a∈A}({a} × C_a) → L, β : U_{b∈B}({b} × D_b) → L s. t.:

1a) α does not increase in the second argument 1b) β does not decrease in the second argument

- for each $a \in A$, $b \in B$, let $P_{a,b}$ have the least element $0_{P_{a,b}}$ s. t. $0_{C_a} \bullet_{a,b} d = c \bullet_{a,b} 0_{D_b} = 0_{P_{a,b}}$, for all $c \in C_a$, $d \in D_b$.
- a complete lattice L is isomorphic to HCL(...) iff there are α : ⋃_{a∈A}({a} × C_a) → L, β : ⋃_{b∈B}({b} × D_b) → L s. t.:

1a) α does not increase in the second argument 1b) β does not decrease in the second argument 2a) Rng(α) is infimum-dense in L

- for each $a \in A$, $b \in B$, let $P_{a,b}$ have the least element $0_{P_{a,b}}$ s. t. $0_{C_a} \bullet_{a,b} d = c \bullet_{a,b} 0_{D_b} = 0_{P_{a,b}}$, for all $c \in C_a$, $d \in D_b$.
- a complete lattice L is isomorphic to HCL(...) iff there are α : ⋃_{a∈A}({a} × C_a) → L, β : ⋃_{b∈B}({b} × D_b) → L s. t.:

1a) α does not increase in the second argument
1b) β does not decrease in the second argument
2a) Rng(α) is infimum-dense in L
2b) Rng(β) is supremum-dense in L

- for each $a \in A$, $b \in B$, let $P_{a,b}$ have the least element $0_{P_{a,b}}$ s. t. $0_{C_a} \bullet_{a,b} d = c \bullet_{a,b} 0_{D_b} = 0_{P_{a,b}}$, for all $c \in C_a$, $d \in D_b$.
- a complete lattice L is isomorphic to HCL(...) iff there are α : U_{a∈A}({a} × C_a) → L, β : U_{b∈B}({b} × D_b) → L s. t.:
 - 1a) α does not increase in the second argument
 1b) β does not decrease in the second argument
 2a) Rng(α) is infimum-dense in L
 2b) Rng(β) is supremum-dense in L
 3) for every a ∈ A, b ∈ B and c ∈ C_a, d ∈ D_b α(a, c) ≥ β(b, d) iff c •_{a,b} d ≤ R(a, b)

・ロ・ ・ 日・ ・ 日・ ・ 日・

• for the first part:

・ロ・ ・ 日・ ・ 日・ ・ 日・

• for the first part:

a) if $\{g_i : i \in I\} \subseteq G$ then

$$\uparrow\left(\bigvee_{i\in I}g_i\right)=\bigwedge_{i\in I}\uparrow(g_i)$$

・ロン ・団 と ・ 国 と ・ 国 と

- for the first part:
 - a) if $\{g_i : i \in I\} \subseteq G$ then

$$\uparrow\left(\bigvee_{i\in I}g_i\right)=\bigwedge_{i\in I}\uparrow(g_i)$$

b) if $\{f_i : i \in I\} \subseteq F$ then

$$\downarrow \left(\bigvee_{i\in I} f_i\right) = \bigwedge_{i\in I} \downarrow (f_i)$$

- 4 回 2 4 三 2 4 三 2 4

・ロ・ ・ 日・ ・ 日・ ・ 日・

• for one implication of the second part, define singleton functions:

・ロト ・回ト ・ヨト ・ヨト

• for one implication of the second part, define singleton functions:

a)
$$S_a^c \in F$$
, for each $a \in A$ and $c \in C_a$:

$$S_a^c(x) = \begin{cases} c & \text{if } x = a \\ 0_{C_a} & \text{elsewhere} \end{cases}$$

・ロン ・聞と ・ほと ・ほと

• for one implication of the second part, define singleton functions:

a)
$$S_a^c \in F$$
, for each $a \in A$ and $c \in C_a$:

$$S_a^c(x) = \begin{cases} c & \text{if } x = a \\ 0_{C_a} & \text{elsewhere} \end{cases}$$

b)
$$T_b^d \in G$$
, for each $b \in B$ and $d \in D_b$:

$$T_b^d(y) = \begin{cases} d & \text{if } y = b \\ 0_{D_b} & \text{elsewhere} \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

• for one implication of the second part, define singleton functions:

a)
$$S_a^c \in F$$
, for each $a \in A$ and $c \in C_a$:

$$S_a^c(x) = \begin{cases} c & \text{if } x = a \\ 0_{C_a} & \text{elsewhere} \end{cases}$$

b)
$$T_b^d \in G$$
, for each $b \in B$ and $d \in D_b$:

$$T_b^d(y) = \begin{cases} d & \text{if } y = b \\ 0_{D_b} & \text{elsewhere} \end{cases}$$

• a)
$$(\downarrow(S_a^c))(b) = \sup\{d \in D_b : c \bullet_{a,b} d \le R(a,b)\}$$

・ロト ・回ト ・ヨト ・ヨト

• for one implication of the second part, define singleton functions:

a)
$$S_a^c \in F$$
, for each $a \in A$ and $c \in C_a$:

$$S_a^c(x) = \begin{cases} c & \text{if } x = a \\ 0_{C_a} & \text{elsewhere} \end{cases}$$

b)
$$T_b^d \in G$$
, for each $b \in B$ and $d \in D_b$:

$$T_b^d(y) = \begin{cases} d & \text{if } y = b \\ 0_{D_b} & \text{elsewhere} \end{cases}$$

• a)
$$(\downarrow(S_a^c))(b) = \sup\{d \in D_b : c \bullet_{a,b} d \le R(a,b)\}$$

b) $(\uparrow(T_b^d))(a) = \sup\{c \in C_a : c \bullet_{a,b} d \le R(a,b)\}$

・ロト ・回ト ・ヨト ・ヨト

• at first, for H = HCL(...), define:

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

at first, for H = HCL(...), define:
 a) α_H(a, c) = ⟨↓(S^c_a), ↑(↓(S^c_a))⟩

★御★ ★注★ ★注★

• at first, for H = HCL(...), define:

a)
$$\alpha_H(a,c) = \langle \downarrow(S_a^c), \uparrow(\downarrow(S_a^c)) \rangle$$

b) $\beta_H(b,d) = \langle \downarrow(\uparrow(T_b^d)), \uparrow(T_b^d) \rangle$

・ロン ・団 と ・ 国 と ・ 国 と

• at first, for H = HCL(...), define:

a)
$$\alpha_H(a,c) = \langle \downarrow(S_a^c), \uparrow(\downarrow(S_a^c)) \rangle$$

b) $\beta_H(b,d) = \langle \downarrow(\uparrow(T_b^d)), \uparrow(T_b^d) \rangle$

• then, for an arbitrary L isomorphic to H through ϕ , define:

• at first, for H = HCL(...), define:

a)
$$\alpha_H(a,c) = \langle \downarrow(S_a^c), \uparrow(\downarrow(S_a^c)) \rangle$$

b) $\beta_H(b,d) = \langle \downarrow(\uparrow(T_b^d)), \uparrow(T_b^d) \rangle$

• then, for an arbitrary L isomorphic to H through ϕ , define:

a)
$$\alpha(a,c) = \phi(\alpha_H(a,c))$$

• at first, for H = HCL(...), define:

a)
$$\alpha_H(a,c) = \langle \downarrow(S_a^c), \uparrow(\downarrow(S_a^c)) \rangle$$

b) $\beta_H(b,d) = \langle \downarrow(\uparrow(T_b^d)), \uparrow(T_b^d) \rangle$

• then, for an arbitrary L isomorphic to H through ϕ , define:

a)
$$\alpha(a,c) = \phi(\alpha_H(a,c))$$

b) $\beta(b,d) = \phi(\beta_H(b,d))$

 for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings

∃ >

 for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings

define

$$\xi(\langle g, f \rangle) = \inf\{\alpha(a, f(a)) : a \in A\}$$

∃ >

 for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings

define

$$\xi(\langle g, f \rangle) = \inf\{\alpha(a, f(a)) : a \in A\}$$

or, equivalently

$$\xi(\langle g, f \rangle) = \sup\{\beta(b, g(b)) : b \in B\}$$

 for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings

define

$$\xi(\langle g, f \rangle) = \inf\{\alpha(a, f(a)) : a \in A\}$$

or, equivalently

$$f(\langle g, f \rangle) = \sup\{\beta(b, g(b)) : b \in B\}$$

• for $\ell \in L$, define:

 for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings

• define

$$\xi(\langle g, f \rangle) = \inf\{\alpha(a, f(a)) : a \in A\}$$

or, equivalently

$$\left\{\xi(\langle g,f
angle)=\sup\{eta(b,g(b)):b\in B\}
ight\}$$

- for $\ell \in L$, define:
 - a) $f_{\ell}(a) = \sup\{c \in C_a : \alpha(a, c) \ge \ell\}$

 for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings

define

$$\xi(\langle g, f \rangle) = \inf\{\alpha(a, f(a)) : a \in A\}$$

or, equivalently

$$\left\{\xi(\langle g,f
angle)=\sup\{eta(b,g(b)):b\in B\}
ight\}$$

• for $\ell \in L$, define:

- a) $f_{\ell}(a) = \sup\{c \in C_a : \alpha(a, c) \ge \ell\}$
- b) $g_{\ell}(b) = \sup\{d \in D_b : \beta(b,d) \leq \ell\}$

 for the opposite implication, let L be an arbitrary complete lattice and α and β assumed mappings

define

$$\xi(\langle g, f \rangle) = \inf\{lpha(a, f(a)) : a \in A\}$$

or, equivalently

$$\left\{ \xi(\langle g, f \rangle) = \sup\{eta(b, g(b)) : b \in B\}
ight\}$$

• for $\ell \in L$, define:

a) $f_{\ell}(a) = \sup\{c \in C_a : \alpha(a, c) \ge \ell\}$ b) $g_{\ell}(b) = \sup\{d \in D_b : \beta(b, d) \le \ell\}$

and then

$$\psi(\ell) = \langle g_\ell, f_\ell \rangle$$

・ロ・ ・ 日・ ・ 日・ ・ 日・

•
$$\psi(\ell)$$
 is really concept:
a) $\uparrow(g_{\ell}) = f_{\ell}$
b) $\downarrow(f_{\ell}) = g_{\ell}$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

•
$$\psi(\ell)$$
 is really concept:

a)
$$\uparrow(g_{\ell}) = f_{\ell}$$

b) $\downarrow(f_{\ell}) = g_{\ell}$

• ξ preserves the ordering

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

- $\psi(\ell)$ is really concept:
 - a) $\uparrow(g_{\ell}) = f_{\ell}$ b) $\downarrow(f_{\ell}) = g_{\ell}$
- ξ preserves the ordering
- ψ preserves the ordering

- 4 回 2 - 4 □ 2 - 4 □

claims:

- $\psi(\ell)$ is really concept:
 - a) $\uparrow(g_{\ell}) = f_{\ell}$ b) $\downarrow(f_{\ell}) = g_{\ell}$
- ξ preserves the ordering
- ψ preserves the ordering

•
$$\xi(\psi(\ell)) = \ell$$

回 と く ヨ と く ヨ と

claims:

- $\psi(\ell)$ is really concept:
 - a) $\uparrow(g_\ell) = f_\ell$ b) $\downarrow(f_\ell) = g_\ell$
- ξ preserves the ordering
- ψ preserves the ordering

•
$$\xi(\psi(\ell)) = \ell$$

•
$$\psi(\xi(\langle g, f \rangle)) = \langle g, f \rangle$$

回 と く ヨ と く ヨ と

claims:

- $\psi(\ell)$ is really concept:
 - a) $\uparrow(g_{\ell}) = f_{\ell}$ b) $\downarrow(f_{\ell}) = g_{\ell}$
- ξ preserves the ordering
- ψ preserves the ordering

•
$$\xi(\psi(\ell)) = \ell$$

•
$$\psi(\xi(\langle g, f \rangle)) = \langle g, f \rangle$$

• all these follow that ξ is a wanted isomorphism

向下 イヨト イヨト

4 Galois-connection approach J. Pócs (MÚ SAV, Košice)

⊡ ▶ < ≣ ▶

-≣->

- A and B are non-empty sets
- for each a ∈ A,
 C_a is a complete lattice
- for each b ∈ B,
 D_b is a complete lattice

個 と く ヨ と く ヨ と

- A and B are non-empty sets
- for each a ∈ A,
 C_a is a complete lattice
- for each b ∈ B,
 D_b is a complete lattice
- for each b ∈ B,

 $\phi_{a,b}$, $\psi_{a,b}$ are mappings s. t. $\phi_{a,b}$ and $\psi_{a,b}$ form a Galois connection between C_a and D_b

Two mappings

Stano Krajči Olomouc – May 3, 2012

・ロン ・雪 と ・ ヨ と ・ ヨ と

•
$$\uparrow: G \to F$$
:
 $(\uparrow(g))(a) = \bigwedge_{b \in B} \phi_{a,b}(g(b))$

・ロン ・雪 と ・ ヨ と ・ ヨ と

•
$$\uparrow: G \to F$$
:
 $(\uparrow(g))(a) = \bigwedge_{b \in B} \phi_{a,b}(g(b))$

•
$$\downarrow : F \to G$$
:
 $(\downarrow(f))(b) = \bigwedge_{a \in A} \psi_{a,b}(f(a))$

・ロン ・四と ・日と ・日と

•
$$\uparrow: G \to F$$
:
 $(\uparrow(g))(a) = \bigwedge_{b \in B} \phi_{a,b}(g(b))$

•
$$\downarrow : F \to G$$
:
 $(\downarrow(f))(b) = \bigwedge_{a \in A} \psi_{a,b}(f(a))$

・ロ・ ・回・ ・ヨ・ ・ヨ・

The heterogeneous approach generalizes this one

Stano Krajči Olomouc – May 3, 2012

白 ト イヨト イヨト

• for each $a \in A$, $b \in B$, take:

同 と く ヨ と く ヨ と

The heterogeneous approach generalizes this one

• for each $a \in A$, $b \in B$, take:

•
$$P_{a,b} = \{0,1\}$$

同 と く ヨ と く ヨ と

• for each $a \in A$, $b \in B$, take:

•
$$P_{a,b} = \{0,1\}$$

• $\bigotimes_{a,b}$ s. t.
for each $c \in C_a$, $d \in D_b$

$$c \otimes_{a,b} d = egin{cases} 0 & ext{if } \phi_{a,b}(c) \geq d \ 1 & ext{elsewhere} \end{cases}$$

白 ト く ヨ ト く ヨ ト

• for each $a \in A$, $b \in B$, take:

•
$$P_{a,b} = \{0,1\}$$

• $\otimes_{a,b}$ s. t.
for each $c \in C_a$, $d \in D_b$

$$c \otimes_{a,b} d = egin{cases} 0 & ext{if } \phi_{a,b}(c) \geq d \ 1 & ext{elsewhere} \end{cases}$$

• R(a,b) = 0 (!)

白 ト く ヨ ト く ヨ ト

• if *C* and *D* are complete lattices then *J* ⊆ *C* × *D* is called G-ideal if:

・ロト ・回ト ・ヨト ・ヨト

- if C and D are complete lattices then J ⊆ C × D is called G-ideal if:
 - if $(c_1, d_1) \leq (c_2, d_2)$ and $(c_2, d_2) \in J$

□ > 《 E > 《 E >

- if C and D are complete lattices then $J \subseteq C \times D$ is called G-ideal if:
 - if $(c_1, d_1) \leq (c_2, d_2)$ and $(c_2, d_2) \in J$ then $(c_1, d_1) \in J$

□ > 《 E > 《 E >

- if C and D are complete lattices then $J \subseteq C \times D$ is called G-ideal if:
 - if $(c_1, d_1) \le (c_2, d_2)$ and $(c_2, d_2) \in J$ then $(c_1, d_1) \in J$
 - if $\{(c_i, d_i) : i \in I\} \subseteq J$

回 と く ヨ と く ヨ と

- if C and D are complete lattices then $J \subseteq C \times D$ is called G-ideal if:
 - if $(c_1, d_1) \le (c_2, d_2)$ and $(c_2, d_2) \in J$ then $(c_1, d_1) \in J$
 - if {(c_i, d_i) : i ∈ I} ⊆ J then

$$\left(\bigvee_{i\in I}c_i,\bigwedge_{i\in I}d_i\right)\in J$$

| 4 回 2 4 U = 2 4 U =

- if C and D are complete lattices then $J \subseteq C \times D$ is called G-ideal if:
 - if $(c_1, d_1) \le (c_2, d_2)$ and $(c_2, d_2) \in J$ then $(c_1, d_1) \in J$
 - if {(c_i, d_i) : i ∈ I} ⊆ J then

$$\left(\bigvee_{i\in I}c_i,\bigwedge_{i\in I}d_i\right)\in J$$

and

$$\left(\bigwedge_{i\in I}c_i,\bigvee_{i\in I}d_i\right)\in J$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Stano Krajči Olomouc – May 3, 2012

・ロト ・回ト ・ヨト ・ヨト

• if (ϕ,ψ) is a Galois connection between C and D

→ 御 → → 注 → → 注 →

• if (ϕ, ψ) is a Galois connection between C and D then

$$\{(c,d)\in C imes D:\phi(c)\geq d\}$$

is a G-ideal on $C \times D$

□ ▶ 《 臣 ▶ 《 臣 ▶

• if (ϕ,ψ) is a Galois connection between C and D then

$$\{(c,d)\in C imes D:\phi(c)\geq d\}$$

is a G-ideal on $C \times D$

• if J is a G-ideal on $C \times D$

/⊒ > < ≣ >

• if (ϕ, ψ) is a Galois connection between C and D then

$$\{(c,d)\in C imes D:\phi(c)\geq d\}$$

is a G-ideal on $C \times D$

• if J is a G-ideal on $C \times D$ then (Φ_J, Ψ_J) is a Galois connection between C and D where

$$\Phi_J(c) = \sup\{d \in D : (c,d) \in J\}$$

and

$$\Psi_J(d) = \sup\{c \in C : (c,d) \in J\}$$

同 とくほ とくほと

• if (ϕ, ψ) is a Galois connection between C and D then

$$\{(c,d)\in C imes D:\phi(c)\geq d\}$$

is a G-ideal on $C \times D$

 if J is a G-ideal on C × D then (Φ_J, Ψ_J) is a Galois connection between C and D where

$$\Phi_J(c) = \sup\{d \in D : (c,d) \in J\}$$

and

$$\Psi_J(d) = \sup\{c \in C : (c,d) \in J\}$$

this relationship is reciprocal

同 と く ヨ と く ヨ と

Stano Krajči Olomouc – May 3, 2012

□ ▶ 《 臣 ▶ 《 臣 ▶

• if
$$\otimes : C \times D \rightarrow P$$
 and $p \in P$ define

$$\mathsf{Gl}_{\otimes,p} = \{(c,d) \in C \times D : c \otimes d \leq p\}$$

/⊒ > < ≣ >

_∢ ≣ ≯

• if
$$\otimes : C \times D \rightarrow P$$
 and $p \in P$ define

$$\mathsf{Gl}_{\otimes,p} = \{(c,d) \in C \times D : c \otimes d \leq p\}$$

周▶ ★ 国▶ ★ 国▶

• if
$$\otimes : C \times D \rightarrow P$$
 and $p \in P$ define

$$\mathsf{Gl}_{\otimes,p} = \{(c,d) \in C imes D : c \otimes d \leq p\}$$

Gl_{⊗,p} is a G-ideal

• in our case, for $a \in A$, $b \in B$, it is enough to take

$$J_{a,b} = \mathsf{Gl}_{\otimes_{a,b},R(a,b)}$$

同 と く ヨ と く ヨ と

• if
$$\otimes : C \times D \rightarrow P$$
 and $p \in P$ define

$$\mathsf{Gl}_{\otimes,p} = \{(c,d) \in C imes D : c \otimes d \leq p\}$$

• in our case, for $a \in A$, $b \in B$, it is enough to take

$$J_{a,b} = \mathsf{Gl}_{\otimes_{a,b}, R(a,b)}$$

and then

•
$$\phi_{a,b} = \Phi_{J_{a,b}}$$

• $\psi_{a,b} = \Psi_{J_{a,b}}$

同 ト イヨ ト イヨト

5 Future work

Stano Krajči Olomouc – May 3, 2012

Future work with heterogeneous approach

→ 御 → → 注 → → 注 →

→ 御 → → 注 → → 注 →

 to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek & Vychodil)

同 と く ヨ と く ヨ と

- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek & Vychodil)
- to generalize some existing results to this approach

- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek & Vychodil)
- to generalize some existing results to this approach
- practical

- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek & Vychodil)
- to generalize some existing results to this approach
- practical
 - to find an example where this approach has added value

- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek & Vychodil)
- to generalize some existing results to this approach
- practical
 - to find an example where this approach has added value
 - to look for interpretation of result fuzzy concepts (not only in this approach!)

- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek & Vychodil)
- to generalize some existing results to this approach
- practical
 - to find an example where this approach has added value
 - to look for interpretation of result fuzzy concepts (not only in this approach!)
 - to present the result concepts in a form acceptable for a client:

- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek & Vychodil)
- to generalize some existing results to this approach
- practical
 - to find an example where this approach has added value
 - to look for interpretation of result fuzzy concepts (not only in this approach!)
 - to present the result concepts in a form acceptable for a client:
 - to reduce their number

- to find the relationship of this approach to new heterogeneous version of hedge approach (Bělohlávek & Vychodil)
- to generalize some existing results to this approach
- practical
 - to find an example where this approach has added value
 - to look for interpretation of result fuzzy concepts (not only in this approach!)
 - to present the result concepts in a form acceptable for a client:
 - to reduce their number
 - to order them by some (well-defined) measure

Thank you for your attention

stanislav.krajci@upjs.sk

Stano Krajči Olomouc – May 3, 2012

→ 御 → → 注 → → 注 →